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Abstract: Let us consider a solution of a one-dimensional stochastic differential equation driven by a
standard Brownian motion with time-inhomogeneous drift coefficient ρ sgn(x)|x|α/tβ . This process can
be viewed as a Brownian motion evolving in a potential, possibly singular, depending on time. We prove
results on the existence and uniqueness of solution, study its asymptotic behaviour and made a precise
description, in terms of parameters ρ, α and β, of the recurrence, transience and convergence. More
precisely, asymptotic distributions, iterated logarithm type laws and rates of transience and explosion
are proved for such processes.

Résumé : Nous considérons la solution d’une équation différentielle stochastique, dirigée par un mou-
vement brownien linéaire standard, dont le terme de dérive varie avec le temps ρ sgn(x)|x|α/tβ . Ce
processus peut être vu comme un mouvement brownien évoluant dans un potentiel dépendant du temps,
éventuellement singulier. Nous montrons des résultats d’existence et d’unicité et nous étudions le com-
portement asymptotique de la solution. Les propriétés de récurrence ou de transience de cette diffusion
sont décrites en fonction des paramètres ρ, α et β, et nous donnons les vitesses de transience et d’explosion.
Des résultats de convergence en loi et des lois de type logarithme itéré sont également obtenus.
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1 Introduction

Let X be a one-dimensional process describing a Brownian motion dynamics in a moving, pos-
sibly singular, potential Vρ,α,β :

dXt = dBt −
1

2
∂xVρ,α,β(t,Xt) dt, Xt0 = x0, (1.1)

with,

Vρ,α,β(t, x) :=
−2ρ

α+ 1

|x|α+1

tβ
, if α 6= −1 and Vρ,α,β(t, x) :=

−2ρ log |x|
tβ

, if α = −1, (1.2)

where B denotes a standard linear Brownian motion, t0 > 0 and x0, ρ, α, β are some real con-
stants. In this paper we shall study the asymptotic behaviour of such process. More precisely,
our main goal is to give conditions which characterise the recurrence, transience and convergence
in terms of parameters ρ, α and β. Here are the natural questions one can ask: does there exist
pathwise unique strong solution X for equation (1.1)? is this solution X recurrent or transient?
does there exist a well chosen normalisation of X to ensure that the normalised process converges
in distribution or almost surely? is it possible to obtain pathwise largest deviations of X, for
instance iterated logarithm type law?

Questions as the last two ones are treated in [1, 2, 8] for different equations having some
common features with (1.1). For instance, Gihman and Skorohod in [8], Chap. 4, §17, consider
the following equation

dYt = dBt + d(Yt)dt, with d(y) ∼
|y|→∞

ρ |y|α, ρ > 0 and − 1 < α < 1. (1.3)
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Under additional assumptions, one proves that Yt is transient and asymptotically behaves as a
solution of the deterministic underlying dynamical system, that is

Yt ∼
t→∞

ht a.s., with h′t = d(ht).

Equation (1.3) is also considered by Appleby and Wu [2] with particular α = −1. Its study is
related to the Bessel process and the situation is more difficult. One proves that Yt satisfies the
iterated logarithm law and recurrence or transience depends on the position of ρ with respect
to 1/2. Appleby and Mackey [1] study the following damped stochastic differential equation

dYt = σ(t)dBt + d(Yt)dt, with d(y) ∼
y→0

ρ sgn(y)|y|α, ρ < 0 and α > 1. (1.4)

Here the diffusion coefficient σ ∈ L2 is such that σ(t) ↓ 0, as t → ∞. It is proved that Yt
converges almost surely to 0 with polynomial rate. We will see that equation (1.4) is connected
to equation (1.1) by performing a suitable change of time.

For time-homogeneous stochastic differential equations driven by a one-dimensional Brow-
nian motion, there exist precise criteria for recurrence or transience (see, for instance, Kallen-
berg [11], Chap. 23), or explosion (see, for instance, Ikeda and Watanabe [10], Chap. VI,
§3), using the scale function. Some of these criteria are extended to the time-inhomogeneous
situation for dimension greater or equal than two in Bhattacharya and Ramasubramanian [3].
Unfortunately, the results in [3] do not apply to equation (1.1), even it is stated that the method
can be adapted to the one-dimensional case. Recall also that there exist some general results
on recurrence or transience (see, for instance, Has’minskii [9], Chap. III), and explosion (see
for instance Narita [15] or Stroock and Varadhan [17], Chap. 10), based on the construction
of some convenient Lyapunov functions. However, for equation (1.1), the construction of such
functions seems to be more delicate.

Equation (1.1) can be also viewed as a continuous counterpart of a discrete time model
considered recently by Menshikov and Volkov [13]. Indeed, the discrete time process studied
in [13] is a random walk on the real positive half line such that

E(Xt+1 −Xt | Xt = x) ∼
t→∞

ρ
xα

tβ
.

The authors establish when the process is recurrent or transient for certain values of parameters
ρ, α, β, give the answer to a open question concerning the Friedman’s urn model (see Freedman
[6]), and present some open problems. Their approach is based on a precise study of some
submartingales and supermartingales.

Contrary to the discrete time model one firstly needs to study the existence, uniqueness
and explosion of solutions for (1.1). In the present paper different situations are distinguished,
following the values of ρ and α, and existence and uniqueness are proved. We point out that,
when α < 0, the existence of a solution is not obvious, since the drift has a singularity. For
the time-homogeneous case, a solution to this problem is given by Cherny and Engelbert in [4],
by using the scale function. These ideas do not apply to one-dimensional time-inhomogeneous
stochastic differential equations, and this is the main difficulty of this part of our paper. Our
idea is to use an appropriate change of time, taking full advantage of the scaling property of
the Brownian motion, of the Girsanov transformation, but also of the classification of isolated
singular points in [4]. These different tools, adapted to continuous time models, also allow to
answer the question of explosion of the solution when α > 1. As an example, we point out that,
when 2β > α+ 1, the solution explodes in finite time with a positive probability, but not almost
surely.
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Figure 1: Phase transition in the attractive case ρ < 0

Another goal of the present paper is to describe, for all values of parameters ρ, α, β, the
recurrent or the transient feature of the solution, but also its convergence. We present in Figure
1 the diagram of phase transition that we obtain in the attractive case ρ < 0. Note that α ≤ −1
is not allowed, since in that case, any solution is only defined up to the time of first reaching
0 (which is finite almost surely), and cannot be continued after it has reached this point. The
critical line separating the two phases (recurrence and convergence toward 0) is β = 0 and on
this line the process is recurrent. The line 2β = α + 1 could be called subcritical, in the sense
that, the rate of the asymptotic behaviour is different on both sides. As for the proof of the
existence, we use a suitable scaling transformation to obtain the asymptotic distribution of X
and its pathwise largest deviations, under a convenient normalisation. In fact, we show that the
asymptotic behaviour of the process is strongly connected to the paths, and to the stationary
distribution, of an ergodic diffusion. For example, when 2β < α+ 1, if ϕ is the positive solution
of ϕ′(t) = ϕ(t)

2β
α+1 , then

Xϕ(t)√
ϕ′(t)

"behaves as" Ht = Bt +

∫ t

0
ρ sgn(Hs)|Hs|αds.

We obtain the convergence in distribution of Xt/t
β
α+1 to the stationary distribution of H, and

also its pathwise largest deviation. In particular, when β < 0, we get the so-called polynomial
stability of X. Furthermore, note that, if we set Yt := X(φt), with φt := t

1
1−β , then Yt satisfies

the damped stochastic differential equation (1.4). We prove similar results as in [1] under slightly
different hypothesis, and we obtain sharp rates of convergence.

We present in Figure 2 the diagram of phase transition that we obtain in the repulsive case
ρ > 0. When α > 1 and 2β ≤ α+ 1 the explosion time is almost surely finite. The critical curve
is composed from two half-lines, β = 0, when α ≤ −1, and 2β = α + 1, when α ≥ −1, and the
process is either recurrent or transient. We prove similar results as in [13], and again we obtain
sharp rates of convergence. On the critical curve one needs to distinguish two particular points
(−1, 0) and (1, 1), because these are the only cases where recurrence and transience depend on
the position of ρ with respect to 1/2. (α, β) = (−1, 0) corresponds to the well known Bessel
process, whereas (α, β) = (1, 1) is a continuous time counterpart of the Friedman’s urn model. In
the latter case, we obtain similar results as in [6] and [13], concerning recurrence and transience,
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Figure 2: Phase transition in the repulsive case ρ > 0

but also regarding the asymptotic distribution and the pathwise largest deviations. For the other
points of the critical curve, the process is recurrent. We point out that this is an open problem
in [13]. The lines α = −1 and α = 1 could be called subcritical, in the sense that, the behaviour
of the process is slightly different to the right or left. In particular, the domain of recurrence
depends on α. The proof of recurrence is based on the same ideas as for the attractive case: by
an appropriate scaling transformation of X we associate an ergodic diffusion, whose asymptotic
behaviour is easier to obtain. For instance, when 2β > α+ 1 and −1 < α < 1, we show that

Xet

e
t
2

"behaves as" Ut = Bt −
∫ t

0

Us
2
ds.

We get that X behaves as a standard Brownian motion: it satisfies the iterated logarithm law
andXt/

√
t converges in distribution to a standard Gaussian random variable. Roughly speaking,

this means that the drift is asymptotically negligible compared to the noise. Concerning the
proof of the transient case, when α < 1, the tools are similar to those used in [13]. We obtain
similar results as in [8], for equation (1.3), and we show that X behaves as a solution of the
deterministic underlying dynamical system, that is

|Xt| ∼
t→∞

|ht| a.s., with h′t = ρ sgn(ht)
|ht|α
tβ

.

Some results in the present paper could be obtained, with similar arguments, for a general
potential V , under convenient assumptions, for instance, when ∂xV (t, x) = −2f(t)g(x) with
f(t) ∼t→∞ t−β and |g(x)| ∼|x|→∞ ρ|x|α. These results will be presented elsewhere. The case
of a multiplicative noise seems more difficult. Another interesting situation is obtained when
one replaces the Brownian motion by a (stable) Lévy process, and it is object of some works in
progress. Some methods in the present paper can be used in the study of a time-inhomogeneous
diffusion in random environment of the form V (t, x) = t−βW (x), with W a self-similar process
(for instance, a Brownian motion). This situation it is also object of some works in progress.

The paper is organised as follows: in the next section we introduce the scaling transformations
and list the associated equations associated to some particular transformations. In Section 3
we perform the complete study of the existence, uniqueness and explosion of the solutions for
equation (1.1). Section 4 is devoted to a systematic study of the asymptotic behaviour of the
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solutions. Three cases are considered: on the critical line 2β = α+ 1, above and under this line.
Proofs of some technical results are given in the Appendix.

2 Scaling transformation and associated equations

We shall study equation (1.1) in its equivalent form:

dXt = dBt + ρ sgn(Xt)
|Xt|α
tβ

dt, Xt0 = x0, (2.1)

B being a standard Brownian motion defined on a filtered probability space (Ω,F , (Ft)t≥0,P).
By symmetry of the equation and by the usual scaling transformation, we can assume without
loss of generality that x0 ≥ 0 and t0 = 1. We will keep these assumptions all along the paper.

We begin by defining a transformation of equation (2.1) which takes full advantage of the
scaling property of the Brownian motion B and the homogeneous properties of the drift d(t, x) :=
ρ sgn(x)|x|α/tβ , that is for any λ, µ > 0,

(t 7→ Bλt)
L
= (t 7→ λ

1
2Bt) and d(µt, λx) = λαµ−βd(t, x).

This transformation will provide some important equations related to our problem and it will
be useful later to study the existence, the uniqueness and the asymptotic behaviour of solutions
of equation (2.1).

2.1 Scaling transformation

For any T ∈ (0,∞], let C([0, T )) be the set of functions ω : [0, T ) → R ∪ {∆} such that there
exists a time τe(ω) ∈ (0, T ] (called the killing time of ω) such that ω is continuous on [0, τe(ω))
and ω = ∞ on [τe(ω), T ). We set Ω := C([1,∞)) and Ω∗ := C([0, t1)), with t1 ∈ (0,∞].
For every C2-diffeomorphism (change of time) ϕ : [0, t1) → [1,∞) we introduce the scaling
transformation Φϕ : Ω→ Ω∗ given by

Φϕ(ω)(s) :=
ω(ϕ(s))√
ϕ′(s)

, with s ∈ [0, t1), ω ∈ Ω. (2.2)

Proposition 2.1. The scaling transformation Φϕ induces a bijection between weak solutions
(possibly explosive) of equation (2.1) and weak solutions (possibly explosive) of equation

dX(ϕ)
s = dWs + ρ

ϕ′(s)
α+1
2

ϕ(s)β
sgn(X(ϕ)

s )|X(ϕ)
s |α ds−

ϕ′′(s)

ϕ′(s)

X
(ϕ)
s

2
ds, X

(ϕ)
0 =

x0√
ϕ′(0)

. (2.3)

Here {Ws : s ∈ [0, t1)} denotes a standard Brownian motion. More precisely,

i) if (X,B) is a solution of equation (2.1) then (X(ϕ),W ) is a solution of equation (2.3)
where

X(ϕ) = Φϕ(X) and Wt :=

∫ t

0

dB(ϕ(s))√
ϕ′(s)

; (2.4)

ii) if (X(ϕ),W ) is a solution of equation (2.3) then (X,B) is a solution of equation (2.1)
where

X = Φ−1ϕ (X(ϕ)) and Bt −B1 :=

∫ t

1

√
(ϕ′ ◦ ϕ−1)(s) dW (ϕ−1(s)). (2.5)
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It follows that uniqueness in law, pathwise uniqueness or strong existence holds for equation (2.1)
if, and only if, it holds for equation (2.3).

Proof. Let (X,B) be a solution of equation (2.1). By using P. Lévy’s characterisation theorem of
Brownian motion, we can see thatW defined in (2.4) is a standard Brownian motion. Moreover,
by performing the change of variable t := ϕ(s) in (2.1), we get

Xϕ(s) −Xϕ(0) =

∫ s

0

√
ϕ′(u) dWu + ρ

∫ s

0
sgn

(
Xϕ(u)

) |Xϕ(u)|α
ϕ(u)β

ϕ′(u) du.

By the integration by parts formula written in its differential form we obtain

d

(
Xϕ(s)√
ϕ′(s)

)
= dWs + ρ

ϕ′(s)
α+1
2

ϕ(s)β
sgn

(
Xϕ(s)√
ϕ′(s)

)∣∣∣∣∣ Xϕ(s)√
ϕ′(s)

∣∣∣∣∣
α

ds−
Xϕ(s)√
ϕ′(s)

ϕ′′(s)

2ϕ′(s)
ds.

We conclude that equation (2.3) is satisfied by (X(ϕ),W ). The proof of (2.5) is similar by noting
that Φϕ is a bijection and its inverse function is given by

Φ−1ϕ (ω)(s) =
√
ϕ′ ◦ ϕ−1(s)ω(ϕ−1(s)), with s ∈ [1,∞), ω ∈ Ω∗.

The final remark is a simple application of parts i) and ii). �

2.2 Two particular transformations

We give here two scaling transformations which produce at least one time-homogeneous coeffi-
cient among the two terms of the drift in (2.3). We also introduce some equations related to
(2.1) which will be useful later in our study. For simplicity, we will keep the notation W for a
standard Brownian motion which can be different from the process employed in Proposition 2.1.

2.2.1 Exponential scaling transformation

The transformation (2.2) associated to the exponential change of time ϕe(t) := et, and denoted
by Φe, is given by

Φe(ω)(s) =
ω(es)

es/2
, with s ∈ [0,∞), ω ∈ Ω.

The process X(e) := Φe(X) satisfies equation (2.3) which can be written

dX(e)
s = dWs −

X
(e)
s

2
ds+ ρ e(

α+1
2
−β)s sgn(X(e)

s )|X(e)
s |αds, X

(e)
0 = x0. (2.6)

On the one hand, if we leave out the third term in the right hand side of equation (2.6), we
obtain the classical equation of the Ornstein-Uhlenbeck process:

dUs = dWs −
Us
2
ds, U0 = x0. (2.7)

Note that equation (2.7) is a particular case of equation (2.1) with parameters ρ = −1/2, α = 1
and β = 0. On the other hand, when α = −1, by Ito’s formula we can see that Y := X2 satisfies

dYt = 2
√
Yt dWt +

(2ρ

tβ
+ 1
)
dt, Y0 = x20, Y ≥ 0. (2.8)

This process can be viewed as a square Bessel process whose dimension depends on time. Clearly,
when β = 0, this process is the classical square Bessel process R of dimension 2ρ + 1 and it
satisfies

dRt = 2
√
Rt dWt + (2ρ+ 1) dt, R0 = x20, R ≥ 0. (2.9)
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Furthermore, the process R(e) := Φe(R) satisfies

dR
(e)
t = 2

√
R

(e)
t dWt +

(
2ρ+ 1− R

(e)
t

2

)
dt, R

(e)
0 = x20, R(e) ≥ 0. (2.10)

2.2.2 Power scaling transformation

Assume that α 6= −1 and consider the Cauchy problem:

ϕ′γ(s) = ϕγ(s)γ , ϕγ(0) = 1, with γ :=
2β

α+ 1
. (2.11)

There exists a unique maximal solution ϕγ ∈ C2([0, t1); [1,∞)) and we can see that

ϕγ(s) = (1 + (1− γ)s)
1

1−γ , when γ 6= 1 and ϕγ(s) = es, when γ = 1,

with t1 = ∞, when γ ∈ (−∞, 1], and t1 = 1/(γ − 1), when γ ∈ (1,∞). The transformation
(2.2) associated to this change of time will be denoted Φγ, and is given by

Φγ(ω)(s) =
ω(ϕγ(s))

ϕγ(s)
γ
2

, with s ∈ [0, t1), ω ∈ Ω.

The process X(γ) := Φγ(X) satisfies equation (2.3) which can be written

dX(γ)
s = dWs + ρ sgn(X(γ)

s )|X(γ)
s |α ds− γϕγ−1γ (s)

X
(γ)
s

2
ds, X

(γ)
0 = x0, s ∈ [0, t1). (2.12)

i) If γ ∈ (−∞, 1), equation (2.12) takes the form:

dX(γ)
s = dWs + ρ sgn(X(γ)

s )|X(γ)
s |α ds−

γ X
(γ)
s

2(1 + (1− γ)s)
ds, X

(γ)
0 = x0, s ∈ [0,∞). (2.13)

ii) If γ ∈ (1,∞), equation (2.12) takes the form:

dX(γ)
s = dWs + ρ sgn(X(γ)

s )|X(γ)
s |α ds− δ

X
(γ)
s

t1 − s
ds, X

(γ)
0 = x0, s ∈ [0, t1), (2.14)

with
t1 =

1

γ − 1
and δ :=

γ

2(γ − 1)
.

iii) If γ = 1, equation (2.12) takes the form:

dZs = dWs +
(
ρ sgn(Zs)|Zs|α −

Zs
2

)
ds, Z0 = x0, s ∈ [0,∞). (2.15)

Note that the transformations Φe and Φγ coincide when γ = 1. Finally, let us introduce another
two stochastic differential equations related to (2.12). First, we leave out the third term on the
right hand side of (2.12) and we get

dHs = dWs + ρ sgn(Hs)|Hs|αds, H0 = x0, s ∈ [0, t1). (2.16)

Note that the latter equation is nothing but (2.1) with β = 0. Second, we leave out the second
term in the right hand side of (2.14) and we obtain

dbs = dWs − δ
bs

t1 − s
ds, b0 = x0, s ∈ [0, t1). (2.17)

The process b is the so-called δ-Brownian bridge (see also [12]) and it is the classical Brownian
bridge when δ = 1.

8



3 Preliminary study of solutions

In this section we study existence, uniqueness and explosion of solutions for equation (2.1).
For parameters (ρ, α, β) ∈

(
R × (−1,∞) × R

)
∪
(
[0,∞) × (−∞,−1] × R

)
and x0 ∈ [0,∞) we

prove the existence of a time-inhomogeneous diffusion X solution of equation (2.1), defined up
to the explosion time, and taking its values in R, provided α ∈ (−1,∞), in (0,∞), provided
α ∈ (−∞,−1) and in [0,∞), provided α = −1. We show that this diffusion can explode in finite
time with positive probability when (ρ, α, β) ∈ (0,∞)× (1,∞)×R.

3.1 Existence and uniqueness

Existence and uniqueness for equation (2.1) are not obvious since the drift could be singular in
0 and/or not time-homogeneous. However, with the help of transformation (2.2), the Girsanov
transformation and the results on power equations in [4], chap. 5, we reduce to the study of
equation (2.16) when α 6= −1. The following remark is stated only for later reference.

Remark 3.1. Assume that α ∈ R \ {−1}. The Girsanov transformation induces a linear
bijection between weak solutions (respectively nonnegative solutions or positive solutions) defined
up to the explosion time of equation (2.12) and weak solutions (respectively nonnegative solutions
or positive solutions) defined up to the explosion time of equation (2.16).

3.1.1 Locally integrable singularity : α > −1

In this case x 7→ |x|α is locally integrable. As for equation (2.16), we show that there exists a
pathwise unique strong solution X to equation (2.1) defined up to the explosion time.

Proposition 3.2. If α ∈ (−1,∞), β, ρ ∈ R, there exists a pathwise unique strong solution X
to equation (2.1) defined up to the explosion time.

Proof. By using Proposition 2.2 in [4], p. 28, there exists a unique weak solution H to the time-
homogeneous equation (2.16) defined up to the explosion time. Therefore, by using Remark 3.1,
there exists a unique weak solution X(γ) to equation (2.12) and, by using Proposition 2.1, there
exists a unique weak solution X to equation (2.1). Moreover, since pathwise uniqueness holds
for equation (2.1) by using Proposition 3.2 and Corollary 3.4, Chap. IX in [16], pp. 389-390, we
get the conclusion. Note that for the nonsingular case α ≥ 0, the coefficients of equation (2.1)
are continuous, hence the present proposition can be obtained by usual techniques (localisation,
Girsanov and Novikov theorems). �

Let us denote by L(±X) the distribution of the process ±X. We shall say that a probability
distribution µ is a mixture of distributions of X and −X, if there exists λ ∈ [0, 1] such that
µ = λL(X)+(1−λ)L(−X). Equivalently, there exists a discrete random variable U ∈ {−1,+1},
independent of X, such that µ = L(UX).

3.1.2 Nonlocally integrable singularity : α < −1 and ρ > 0

Again, it suffices to study equation (2.16). We shall see that there exists a pathwise unique
nonnegative solution X to equation (2.1) and there are several strong Markov weak solutions
when the process start at the singularity x0 = 0.

Proposition 3.3. If α ∈ (−∞,−1), β ∈ R and ρ ∈ (0,∞), there exists a pathwise unique
nonnegative strong solution X to equation (2.1). Moreover,

i) if x0 ∈ (0,∞), X is the pathwise unique strong solution and it is positive;
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ii) if x0 = 0, for all t > 1, Xt > 0 a.s. and the set of all weak solutions is the set of all
distributions which are mixture of distributions of X and −X.

Proof. By using Theorem 3.5 in [4], p. 66, there exists a unique nonnegative weak solution H
to equation (2.16) defined up to the explosion time. We deduce, following the same lines as in
the proof of the previous proposition, that there exists a pathwise unique nonnegative strong
solution to equation (2.1). We point out that there is no uniqueness in law for equation (2.1)
when x0 = 0 and we cannot apply directly Proposition 3.2, Chap. IX in [16], p. 389, to prove the
the pathwise uniqueness. However, we can check that a similar result to the cited proposition,
whose the proof can be imitated, holds for nonnegative solutions.

Moreover, if x0 ∈ (0,∞), any weak solution of equation (2.16) is positive and we deduce that
there exists a pathwise unique strong solution to equation (2.1) and this solution is positive.

Finally, if x0 = 0, the set of all weak solutions of equation (2.16) is (by symmetry of the
equation) the set of all distributions which are mixture of the distributions of H and −H. We
deduce the point ii) and the proof is done. �

3.1.3 Bessel type case: α = −1 and ρ > 0

In this case, Remark 3.1 does not hold and we perform a direct study of (2.1). We show that
there exists a pathwise unique nonnegative strong solution X to equation (2.1), which can be
viewed as a Bessel process whose the dimension 2ρt−β + 1 depends on time. Note that it is
possible that there exists different weak solutions (not necessarily Markovian).

Proposition 3.4. If α = −1, ρ ∈ (0,∞) and β ∈ R, there exists a pathwise unique nonnegative
strong solution X to equation (2.1). Moreover,

i) if ρ ∈ [1/2,∞), β ∈ (−∞, 0] and x0 ∈ (0,∞), X is the pathwise unique strong solution
and it is positive;

ii) if ρ ∈ [1/2,∞), β ∈ (−∞, 0] and x0 = 0, the set of all weak solutions is the set of all
distributions which are mixture of distributions of X and −X and ∀ t > 0, Xt > 0 a.s.;

iii) if β ∈ (0,∞) or if (ρ, β) ∈ (0, 1/2)× (−∞, 0], we can construct different weak solutions to
equation (2.1) and in the first case the set {t ≥ 1 : Xt = 0} is unbounded a.s.

Proof. To begin with, it is not difficult to see that there exists a pathwise unique nonnegative
strong solution Y to equation (2.8). This process can be viewed as the squared Bessel process
having a time-dependent dimension 2ρt−β + 1. We shall prove that X :=

√
Y is a nonnegative

weak solution of equation (2.1). By applying Ito’s formula, for all t ≥ 1 and ε > 0,

(X2
t + ε)

1
2 = (x20 + ε)

1
2 +

∫ t

1

( X2
s

X2
s + ε

) 1
2
dWs +

∫ t

1

ρ ds

sβ(X2
s + ε)

1
2

+

∫ t

1

ε ds

2(X2
s + ε)

3
2

. (3.1)

We let ε→ 0 in (3.1). Firstly, it is clear that

lim
ε→0

∫ t

1

( X2
s

X2
s + ε

) 1
2
dWs = Wt −W1, in probability.

Secondly, by monotone convergence theorem, the third term in the right hand side of (3.1)
converges a.s. We show that the limit is finite a.s. and that the fourth term converges toward
0 in probability by comparison with a squared Bessel process. To this end, let us consider the
pathwise unique nonnegative strong solution of

Qs = x0 +Ws −W1 +

∫ s

1

ρ1
Qu

du, s ≥ 1, with ρ1 := inf
{ ρ
sβ

: s ∈ [1, t]
}
> 0. (3.2)
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Q is a classical Bessel process of dimension 2ρ1+1. By using a comparison theorem (see Theorem
1.1, Chap. VI in [11], p. 437) and Ito’s formula, we can see that for all s ∈ [1, t], X2

s ≥ Q2
s and

(Q2
t + ε)

1
2 = (x20 + ε)

1
2 +

∫ t

1

( Q2
s

Q2
s + ε

) 1
2
dWs +

∫ t

1

ρ1 ds

(Q2
s + ε)

1
2

+

∫ t

1

ε ds

2(Q2
s + ε)

3
2

.

Since Q is a solution of (3.2) we obtain, by letting ε→ 0 in the latter equality,∫ t

1

ρ ds

sβXs
≤
∫ t

1

ρ2
Qs

ds <∞ a.s. with ρ2 := sup
{ ρ
sβ

: s ∈ [1, t]
}
<∞,

and also

lim
ε→0

∫ t

1

ε ds

(X2
s + ε)

3
2

≤ lim
ε→0

∫ t

1

ε ds

(Q2
s + ε)

3
2

= 0, in probability.

We get that X is a nonnegative weak solution of (2.1). Pathwise uniqueness is obtained by using
the same arguments as in the proof of Propositions 3.2 and 3.3 and we deduce that there exists
a pathwise unique nonnegative strong solution X to equation (2.1). We proceed with the proof
of points i)-iii) in the statement of the proposition.

Firstly, if ρ ∈ [1/2,∞), β ∈ (−∞, 0] and x0 ∈ (0,∞), the inequality 2 ≤ 2ρt−β + 1 holds for
all t ≥ 1 and we deduce that X is positive by comparison with a Bessel process of dimension 2.

Secondly, if ρ ∈ [1/2,∞), β ∈ (−∞, 0] and x0 = 0, the same comparison can be used to see
that every solution X̃ of (2.1) satisfies X̃2

t 6= 0, for all t > 1 a.s. Let us introduce

Ω± := {ω ∈ Ω : ∀t > 1, ±X̃t > 0} and P± := P
(
•
∣∣Ω±) .

For all ε > 0, Ω± = {ω ∈ Ω : ∀1 < t < 1 + ε, ±X̃t > 0} ∈ Ft+ε and then Ω± ∈ F1+. Therefore,
the standard Brownian motion {Bt − B1}t≥1 under P is again a standard Brownian motion
under probabilities P±. By uniqueness of the nonnegative weak solution and also, by symmetry,
of the nonpositive solution of (2.1), the distribution of X̃ under P± equals to the distribution
of ±X. The point ii) is then a simple consequence.

Finally, if β ∈ (0,∞), for t large enough we have 2ρt−β + 1 ≤ δ, with δ ∈ (0, 1). By
comparison with a Bessel process of dimension δ, we get that the reaching time of 0 is finite a.s.
and the set {t > 1 : Xt = 0} is unbounded a.s. Besides, if X is a solution starting from x0 = 0,
−X is also a solution. We deduce that different solutions could be constructed by gluing the
paths of X and −X each time when the process returns in 0. If ρ ∈ (0, 1/2) and β ∈ (−∞, 0),
for all s ∈ [1, (2ρ)1/β) and t ∈ [1, s], 2ρt−β + 1 ≤ 2ρs−β + 1. We deduce by comparison with a
Bessel process of dimension 2ρs−β + 1 ∈ (1, 2) that the reaching time of 0 belongs to

[
1, (2ρ)1/β

)
with a positive probability. Indeed, the reaching time of 0 for a Bessel process of this dimension
has a positive density with respect to the Lebesgue measure (with an explicit expression given,
for instance, in [7], p. 537). As in the preceding case, different solutions can be constructed. �

Remark 3.5. By using similar methods as in Propositions 3.2, 3.3 and 3.4, when α ≤ −1 and
ρ < 0, it can be proved that weak solutions of equation (2.1) are only defined up to the reaching
time of 0, which is finite a.s. and cannot be continued after this time. This case will be not
considered since is out of range for the study of the asymptotic behaviour.

3.2 Explosion of solutions

We show that X explodes in finite time with positive probability if and only if α ∈ (1,∞).
More precisely, the explosion time τe of X is finite a.s., provided 2β ≤ α + 1, and satisfies
P(τe =∞) ∈ (0, 1), provided 2β > α+ 1.
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Proposition 3.6. The explosion time τe of X is infinite a.s. if ρ ∈ (−∞, 0) or α ∈ (−∞, 1].
It is finite a.s. if ρ ∈ (0,∞), α ∈ (1,∞) and 2β ∈ (−∞, α+ 1].

Proof. Assume first that ρ ∈ (−∞, 0) or α ∈ (−∞, 1]. Let F be a twice continuous differentiable
nonnegative function such that F (x) := 1 + x2 for all |x| ≥ 1, F (x) = 1 for all x ∈ [1/2, 1/2]
and F ≥ 1. For all T ≥ 1, we denote cT the supremum of LF on [1, T ]× [−1, 1], where L is the
infinitesimal generator of X given by

L :=
1

2

∂2

∂x2
+ ρ sgn(x)

|x|α
tβ

∂

∂x
+
∂

∂t
. (3.3)

It is a simple calculation to see that for all t ∈ [1, T ] and x ∈ R,

LF (t, x) ≤ cT + λTF (t, x) ≤ (cT + λT )F (t, x), with λT := sup
1≤t≤T

(1 + |ρ|t−β).

By using Theorem 10.2.1 in [17], p. 254, we deduce that the explosion time τe is finite a.s.
Finally, assume that ρ ∈ (0,∞), α ∈ (1,∞) and 2β ∈ (−∞, α+ 1]. By using Proposition 2.1

it suffices to show that the solution X(γ) of equation (2.12) explodes in finite time a.s. Let us
introduce Qs and Cs, the pathwise unique strong solutions of

dQs = 2
√
Qs dWs +

(
2ρQ

α+1
2

s − |γ|Qs + 1
)
ds, Q0 = x20,

and
dCs = 2

√
Cs dWs +

(
2ρC

α+1
2

s − γϕγ−1γ (s)Cs + 1
)
ds, C0 = x20.

By using Ito’s formula, we can see that the square of X(γ) satisfies the latter equation and
by weak uniqueness, we get that C and (X(γ))2 have the same distribution. Moreover, since
γ = 2β/(α+ 1) ≤ 1, we can see that 0 ≤ ϕγ−1γ ≤ 1. By comparison theorem, we get that
0 ≤ Qs ≤ Cs a.s. Besides, by using Theorem 5.7 in [4], p. 97, the explosion time of the time-
homogeneous diffusion Q is finite a.s. We deduce that the explosion time of C, and consequently
that of X(γ), is finite a.s. �

Proposition 3.7. If ρ ∈ (0,∞), α ∈ (1,∞) and 2β ∈ (α+ 1,∞),

P(τe =∞) = E
[

exp
(∫ t1

0
ρ sgn(bu)|bu|αdWu −

1

2

∫ t1

0
ρ2|bu|2αdu

)]
∈ (0, 1), (3.4)

where b denotes the weak solution of equation (2.17) and τe the explosion time of X.

Proof. Let X(γ) be the pathwise unique strong solution of equation (2.14) and b be the pathwise
unique strong solution of equation (2.17). Recall that γ = 2β/(α+ 1) > 1 and t1 = 1/(γ − 1).
Denote by ηe the explosion time of X(γ) and note that a.s. ηe ∈ [0, t1] ∪ {∞} and {ηe ≥ t1} =
{τe =∞}. We need to show that P(ηe ≥ t1) is equal to the right hand side of (3.4) and belongs
to (0, 1). First of all, b is a continuous process on [0, t1], with bt1 = 0 a.s., it is the so-called
δ-Brownian bridge (see Definition 1 in [12], p. 1022). By using the Girsanov transformation
between b and X(γ), we can write for every integer n ≥ 1, s ∈ [0, t1] and A ∈ Fs,

E
[
1A
(
X

(γ)
•∧ηn

)
1{ηn>s}

]
= E

[
1A (b•∧σn) E (s ∧ σn)1{σn>s}

]
,

where
ηn := inf{s ∈ [0, t1) : |X(γ)

s | ≥ n}, σn := inf{s ∈ [0, t1) : |bs| ≥ n},
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and
E(s) := exp

(∫ s

0
ρ sgn(bu)|bu|αdWu −

1

2

∫ s

0
ρ2|bu|2αdu

)
.

Letting n→∞, we obtain

E
[
1A(X(γ))1{ηe>s}

]
= E

[
1A(b)E(s)

]
. (3.5)

In particular, we have proved that for all s ∈ [0, t1], P(ηe > s) = E [E(s)]. Furthermore it is
clear that P(τe = ∞) = P(ηe ≥ t1) ≥ E [E(t1)] > 0. At this level we state a technical result
which proof is postponed to the Appendix.

Lemma 3.8. Assume that ρ ∈ (0,∞), α ∈ (1,∞) and 2β ∈ (α + 1,∞), and denote by ηe ∈
[0, t1] ∪ {∞} the explosion time of X(γ) (the weak solution of (2.14)). Then P(ηe = t1) = 0.

We deduce from this lemma that P(τe = ∞) = P(ηe ≥ t1) = P(ηe > t1) = E(E(t1)) and the
equality in (3.4) is proved. It remains to show that P(τe =∞) < 1. Recall that α ∈ (1,∞) and
let a ∈ (1, α). Set g(x) := 1 ∧ |x|−a and note that, for any T > 1, we can choose k ≥ 1, such
that a(a − 1)−1 =

∫∞
0 g(y)dy < k(T − 1). Moreover, we can see that there exists a continuous

differentiable odd function f , defined on R, vanishing only at x = 0, such that |f | ≤ g, and

f(x) := kx, x ∈ [−1/2k, 1/2k] , lim
|x|→∞

|x|α|f(x)| =∞ and lim
|x|→∞

f ′(x) = 0.

For µ > 0 we introduce the bounded twice continuous differentiable function

Fµ(x) := exp
(
µ

∫ x

0
f(y)dy

)
, x ∈ R.

We shall apply Theorem 10.2.1 in [17], p. 254, to the diffusion X, solution of (2.1), with the
function Fµ for some µ > 0. It will implies that P(τe ≤ T ) > 0 for any T > 1. We need to verify
that there exists λ > 0 and µ > 0 such that for all t ∈ [1, T ] and x ∈ R,

LFµ(t, x) ≥ λFµ(x) and ln
(supx∈R Fµ(x)

Fµ(x0)

)
< λ(T − 1). (3.6)

Here L is given in (3.3). In order to prove (3.6), note that for all t ∈ [1, T ] and x ∈ R,

LFµ(t, x) = µFµ(x)
(
ρt−β|x|α|f(x)|+ µ

2
f2(x) +

1

2
f ′(x)

)
.

The assumptions on f imply that there exists r ≥ 1 such that, for all µ > 0,

LFµ ≥
k

2
µFµ on [1, T ]× ([−1/2k, 1/2k] ∪ [−r, r]c) .

Besides, since f2 is bounded away from zero, while |f ′| is bounded on [−1/2k,−r] ∪ [1/2k, r],
we deduce that there exists µ0 > 0 such that

LFµ0 ≥
k

2
µ0Fµ0 on [1, T ]× ([−1/2k,−r] ∪ [1/2k, r]) .

Hence, for all t ∈ [1, T ] and x ∈ R, LFµ0(t, x) ≥ k
2 µ0Fµ0(x) and we can see that

ln

(
supx∈R Fµ0(x)

Fµ0(x0)

)
= µ0

∫ ∞
|x0|

f(y)dy ≤ µ0
∫ ∞
0

g(y)dy <
k

2
µ0(T − 1).

Therefore Theorem 10.2.1 in [17] applies with λ := k
2µ0 and Fµ0 and X explodes in finite time

with positive probability. This ends the proof of the proposition, excepted for Lemma 3.8. �
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4 Asymptotic behaviour of solutions

We present here the systematic study of the recurrence, transience or convergence of the time-
inhomogeneous one-dimensional diffusion X (a regular strong Markov process solution of (2.1))
for parameters (ρ, α, β) ∈ P := P− ∪ P+ , where

P− := (−∞, 0)× (−1,∞)×R (attractive case) and P+ := (0,∞)×R×R (repulsive case).

Set Eα := R, when α ∈ (−1,∞), Eα := (0,∞), when α ∈ (−∞,−1], and introduce the
probability distributions Λρ,α and Πρ,α on Eα defined by

Λρ,α(dx) := c−1e−Vρ,α(x)e−x
2/2 dx and Πρ,α(dx) := k−1e−Vρ,α(x) dx. (4.1)

Here we denote c, k the normalization constants and

Vρ,α(x) := Vρ,α,β(1, x) = Vρ,α,0(t, x) =

{
− 2ρ
α+1 |x|α+1, if α 6= 1,

−2ρ log |x|, if α = 1,
(4.2)

where Vρ,α,β(t, x) is the time-dependent potential given in (1.2). Besides, let us introduce the
following three rate functions,

L(t) := (2t ln ln t)
1
2 , Lρ,α(t) := t

1
2 (cρ,α ln ln t)

1
α+1 and Lρ,α,β(t) := (cρ,α,β t

β ln t)
1

α+1 , (4.3)

where
cρ,α :=

|α+ 1|
2|ρ| and cρ,α,β :=

|α+ 1− 2β|
2|ρ| . (4.4)

We shall say that the process X is recurrent in E ⊂ R if, for all x ∈ E, the set {t ≥ 1 : Xt = x}
is unbounded a.s. and we shall say that it is transient if limt→τe |Xt| =∞ a.s.

4.1 Behaviour on the critical line: 2β = α + 1

The scaling transformation (2.2) associated with the exponential change of time provides a time-
homogeneous equation (2.15). With the help of Motoo’s theorem (see Theorem 4.4 below) and of
the ergodic theorem (see, for instance, Theorem 23.15 in [11], p. 465) we obtain the asymptotic
behaviour of solutions to (2.1).

Theorem 4.1 (Attractive case). If (ρ, α, β) ∈ P− and 2β = α+ 1, X is recurrent in R and

lim
t→∞

Xt√
t

L
= Λρ,α. (4.5)

Moreover,

i) if α ∈ (−1, 1), it satisfies

lim sup
t→∞

Xt

L(t)
= 1 a.s.; (4.6)

ii) if α ∈ (1,∞), it satisfies

lim sup
t→∞

Xt

Lρ,α(t)
= 1 a.s.; (4.7)

iii) if α = 1, it satisfies

lim sup
t→∞

Xt

L(t)
=

1√
1− 2ρ

a.s. (4.8)
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In the repulsive case similar ideas will apply. However, we need to distinguish two particular
cases, when α = −1 (Bessel case) or when α = 1 (the continuous time analogue of the Friedman’s
urn model in [6] and [13]). We note that in these cases the recurrent or transient features depend
on the position of ρ with respect to 1/2.

Theorem 4.2 (Repulsive case). Assume that (ρ, α, β) ∈ P+ and 2β = α+ 1.

i) If α ∈ (−1, 1), X is recurrent in R and it satisfies (4.5) and (4.6).

ii) If α ∈ (−∞,−1), X is transient, it satisfies (4.5), (4.6) and

lim inf
t→∞

Xt

Lρ,α(t)
= 1 a.s.. (4.9)

iii) If α ∈ (1,∞), the explosion time τe of X is finite a.s. and

|Xt| ∼
t→τe

τ
α+1

2(α−1)
e

(ρ(α− 1)(τe − t))
1

α−1

a.s. (4.10)

iv) If α = −1, X is the classical Bessel process of dimension 2ρ + 1. It satisfies (4.5) and
(4.6) and, it is recurrent in [0,∞), when ρ ∈ (0, 1/2), recurrent in (0,∞), when ρ = 1/2
and transient, when ρ ∈ (1/2,∞). Moreover,

lim inf
t→∞

ln
(
Xt√
t

)
ln ln t

= − 1

2ρ− 1
a.s. when ρ ∈ (1/2,∞). (4.11)

v) If α = 1, X is a Gaussian process, recurrent in R, when ρ ∈ (0, 1/2], and transient, when
ρ ∈ (1/2,∞). Moreover,

a) if ρ ∈ (0, 1/2), it satisfies

lim
t→∞

Xt√
t

L
= N

(
0,

1

2ρ− 1

)
and lim sup

t→∞

Xt

L(t)
=

√
2

1− 2ρ
a.s.;

b) if ρ = 1/2, it satisfies

lim
t→∞

Xt√
t ln t

L
= N (0, 1) and lim sup

t→∞

Xt√
2 t ln t ln ln ln t

= 1 a.s.;

c) if ρ ∈ (1/2,∞), it satisfies

lim
t→∞

Xt

tρ
= Gρ,x0 a.s., with Gρ,x0 ∼ N

(
x0,

1

2ρ− 1

)
.

Remark 4.3. The results contained in the latter theorem are in keeping with some results ob-
tained for discrete time models in [6] and [13]. More precisely, for the case (α, β) = (1, 1) (point
v) of Theorem 4.2) one finds similar results as Theorems 3.1, 4.1 and 5.1 in [6] and Corollary
1 in [13] concerning Friedman’s urn model. For the case (α, β) = (−1, 0) (point iv) of Theorem
4.2) one gets similar result as in Theorem 5 in [13]. We also point out that the part i) of The-
orem 4.2 gives the asymptotic behaviour on the domain where the question is stated as an open
problem in [13], p. 958.
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Proof of Theorem 4.1. Let Z = Φe(X) ≡ Φγ(X) be the solution of the time-homogeneous
equation (2.15). The scale function and the speed measure of Z (see Chap. VI in [10], pp.
446-449) are respectively given by

s(x) :=

∫ x

0
eVρ,α(y)e

y2

2 dy and m(dx) := e−Vρ,α(x)e−
x2

2 dx.

Remark that m is a finite measure on R and m(dx)/m(R) = Λρ,α(dx). By using the ergodic
theorem (see, for instance, Theorem 23.15 in [11], p. 465), we obtain

lim
t→∞

Xt√
t

= lim
t→∞

Zln t
L
= Λρ,α.

To complete the proof we shall apply Motoo’s theorem (see [14]). We recall this result since it
will be used several times.

Theorem 4.4 (Motoo). Let X be a regular continuous strong Markov process in (a,∞), a ∈
[−∞,∞), which is homogeneous in time, with scale function s and finite speed measure m. For
every real positive increasing function h,

P
(

lim sup
t→∞

Xt

h(t)
≥ 1
)

= 0 or 1 according to whether
∫ ∞ dt

s(h(t))
<∞ or =∞.

Recall that Vρ,α is given by (4.2). By using L’Hôpital’s rule, we can see that

s(x) ∼
x→∞

{
x−1e−Vρ,α(x)e−x

2/2, if α ∈ (−1, 1),

(2|ρ|xα)−1e−Vρ,α(x)e−x
2/2, if α ∈ (1,∞).

If α ∈ (−1, 1), by a simple application of the Motoo’s theorem we see that, for all ε > 0,

P
(

lim sup
t→∞

Zt√
2 ln t

≥ 1 + ε
)

= 0 and P
(

lim sup
t→∞

Zt√
2 ln t

≥ 1− ε
)

= 1.

We deduce
lim sup
t→∞

Xt

L(t)
= lim sup

t→∞

Zln t√
2 ln t

= 1 a.s.

If α ∈ (1,∞), we deduce, again by Motoo’s theorem,

lim sup
t→∞

Xt

Lρ,α(t)
= lim sup

t→∞

Zln t

(cρ,α ln ln t)
1

α+1

= 1 a.s.

Finally, assume that α = 1 (the linear case). Equality (4.8) can be proved by using similar
methods as previously or by using standard results on linear stochastic differential equations.

Furthermore, by symmetry of equation (2.1), we can replace X by −X in relations (4.6)-
(4.8) to deduce that lim supt→∞Xt =∞ and lim inft→∞Xt = −∞ a.s. and conclude that X is
recurrent in R. �

Proof of Theorem 4.2. To begin with, we point out that the proof of the point i), when
α ∈ (−1, 1), is the same as in the proof of Theorem 4.1.

When α ∈ (−∞,−1), this last statement is also true when proving (4.5) and (4.6). We need
to prove (4.9) and the transient feature. To this end, consider again Z = Φe(X) ≡ Φγ(X). By
Ito’s formula, we can see that Z̃ is the weak solution of

dZ̃t = Z̃2
t dWt +

(
Z̃3
t − ρZ̃2−α

t +
Z̃t
2

)
dt, Z̃0 =

1

x0
, with Z̃ :=

1

Z
.
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Again, by applying Motoo’s theorem to Z̃, we deduce that

lim inf
t→∞

Xt

Lρ,α(t)
=

(
lim sup
t→∞

Z̃t

(cρ,α ln t)
1

|α+1|

)−1
= 1 a.s.

Note that this relation insure the transient feature, since limt→∞ Lρ,α(t) =∞, when α < −1.
Assume that α ∈ (1,∞). We have already showed that the explosion time ηe of Z is finite

a.s. (see Proposition 3.6). Moreover, we can see that the process zt := Zt −Wt satisfies the
random ordinary differential equation

dzt
dt

= ρ sgn(zt +Wt)|zt +Wt|α −
zt +Wt

2
.

We deduce that

|zt|1−α
α− 1

=

∫ ηe

t

dzs
sgn(zs)|zs|α

∼
t→ηe

ρ(ηe − t) and |Zt| ∼
t→ηe

1

(ρ(α− 1)(ηe − t))
1

α−1

a.s.

Remark also that the explosion time τe of X satisfies τe = eηe a.s. Therefore

|Xt| =
√
t |Zln t| ∼

t→τe

√
τe

(ρ(α− 1)(ln τe − ln t))
1

α−1

∼
t→τe

τ
α+1

2(α−1)
e

(ρ(α− 1)(τe − t))
1

α−1

a.s.

Assume that α = −1 and let R(e) be the pathwise unique strong solution of equation (2.10).
By applying Lemma 2.2 in [2], p. 916 and the ergodic theorem to R(e), we obtain (4.5) and (4.6)
by change of time. Equality (4.11) is a consequence of Lemma 4.1 in [2], p. 926. The recurrent
or the transient features are proved in Chap. IX in [16].

Finally, if α = 1 we are studying the classical case of a linear stochastic differential equation.
By standard arguments (see, for instance, [16] Proposition 2.3, Chap. IX, p. 378, and Theorem
1.7, Chap. V, p. 182) there exists a Brownian motion W such that

Xt

tρ
= x0 +

∫ t

1

dBs
sρ

= x0 +Wφ(t), with φ(t) :=

{
t1−2ρ−1
1−2ρ if ρ 6= 1/2

ln t if ρ = 1/2.

By using the well known properties of the Brownian motion, we deduce the convergence in
distribution and the pathwise largest deviations of the Gaussian process X. Furthermore, the
recurrent or transient features are simple consequences. �

4.2 Behaviour above the critical line: 2β > α + 1

The scaling transformation (2.2) associated with the exponential change of time does not pro-
vides a time-homogeneous equation. However, we shall prove that the asymptotic behaviour of
equation (2.6) is related to the asymptotic behaviour of the Ornstein-Uhlenbeck process (2.7),
with the help of the Motoo theorem, the ergodic theorem, the comparison theorem (see, for
instance, Theorem 1.1, Chap. VI in [10], p. 437) and of the following result, whose proof is
postponed to the Appendix.

Lemma 4.5. Let Z and H be regular strong Markov processes which are, respectively, weak
solutions of the stochastic differential equations with continuous coefficients:

dZs = σ(s, Zs) dBt + d(s, Zs) ds and dHs = σ∞(Hs) dBs + d∞(Hs) ds.
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Assume (Z,H) is asymptotically time-homogeneous and Π-ergodic, in the sense that

lim
s→∞

σ(s, z) = σ∞(z) and lim
s→∞

d(s, z) = d∞(z), uniformly on compact subsets of R,

and H converges in distribution to Π. Furthermore, assume that Z is bounded in probability,
that is, for all ε > 0 there exists r > 0 such that sups≥0P(|Zs| ≥ r) < ε. Then Z converges also
in distribution to Π.

Theorem 4.6 (Attractive case). If (ρ, α, β) ∈ P− and 2β ∈ (α + 1,∞), X is recurrent in R
and

lim
t→∞

Xt√
t

L
= N (0, 1) and lim sup

t→∞

Xt

L(t)
= 1 a.s. (4.12)

One more time, for the repulsive case we will follow similar ideas as for the attractive case, by
modifying some computations when technical difficulties appear. Besides, when α ∈ (1,∞) the
process explodes with positive probability (see Proposition 3.7). Hence we need to adapt Lemma
4.5 to show that, under the conditional probability of nonexplosion, the solution of equation (2.6)
behaves as the Ornstein-Uhlenbeck process (2.7).

Theorem 4.7 (Repulsive case). Assume that (ρ, α, β) ∈ P+ and 2β ∈ (α+ 1,∞).

i) If α ∈ (−1, 1], X is recurrent in R and it satisfies (4.12).

ii) If α ∈ (−∞,−1], X is recurrent in [0,∞), when α = −1, in (0,∞), when α ∈ (−∞,−1)
and β ∈ [0,∞) and it is transient, when α ∈ (−∞,−1) and β ∈ (−∞, 0). Moreover,

lim
t→∞

Xt√
t

L
= |G| and lim sup

t→∞

Xt

L(t)
= 1 a.s., with G ∼ N (0, 1), (4.13)

and
lim inf
t→∞

Xt

Lρ,α,β(t)
≥ 1 a.s. when α ∈ (−∞,−1). (4.14)

iii) If α ∈ (1,∞), conditionally to {τe =∞}, X is recurrent in R and it satisfies (4.12), and
conditionally to {τe <∞}, it satisfies (4.10).

Remark 4.8. The preceding statement concerning the recurrent asymptotic behaviour is a sim-
ilar result as Theorem 4.2 ii) in [13], p. 955.

Proof of Theorem 4.6. The equalities in the statement will be consequences of Lemma 4.5
and Motoo’s theorem. Let us consider X(e) = Φe(X) the unique weak solution of (2.6) and U
the Ornstein-Uhlenbeck process solution of (2.7). Equalities in (4.12) are equivalent to

lim
t→∞

X
(e)
t
L
= G and lim sup

t→∞

X
(e)
t√

2 ln t
= 1 a.s., with G ∼ N (0, 1). (4.15)

Equalities (4.15) are satisfied by U and roughly speakingX(e) behaves as the Ornstein-Uhlenbeck
process U . The proof of (4.15) is split in three steps.

Step a). Lemma 4.5 does not apply to (X(e), U) since the coefficients of equation (2.6) are
discontinuous when α < 0. To remove the singularity, we consider C := (X(e))3 and Q := U3.
Ito’s formula allows to see that C and Q are solutions of

dCt = 3C
2
3
t dWt + 3

(
C

1
3
t −

Ct
2

+ ρ e(
α+1
2
−β)t sgn(Ct)|Ct|

α+2
3

)
dt, C0 = x30, (4.16)
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and, respectively,

dQt = 3Q
2
3
t dWt + 3

(
Q

1
3
t −

Qt
2

)
dt, Q0 = x30. (4.17)

Since 2β > α+1, we deduce that (C,Q) is asymptotically time-homogeneous and L(G3)-ergodic.
Step b). In order to apply Lemma 4.5 to (C,Q) we need to show that C is bounded in

probability. We prove this result by comparison with time-homogeneous ergodic diffusions. To
this end, consider the pathwise unique strong solution C of equation (4.16) and denote by C±

the pathwise unique strong solutions of equations

dC±t = 3
(
C±t
) 2

3 dWt + 3
( (
C±t
) 1

3 − C±t
2
∓ ρ |C±t |

α+2
3 1{∓C±t ≥0}

)
dt, C±0 = x30.

By using a comparison theorem (see Theorem 1.1, Chap. VI in [10], p. 437) we get, for all t ≥ 0,
C−t ≤ Ct ≤ C+

t , a.s. Moreover, by computation of the speed measure as in the proof of Theorem
4.1, we can see that C± are ergodic diffusions and therefore they are bounded in probability.
By comparison, it is the same for C, and this fact implies the first equality in (4.15).

Step c). We get the pathwise largest deviations of C by comparison with the time-homogeneous
ergodic diffusion. By applying Motoo’s theorem to C+ (as in Theorem 4.1), we obtain

lim sup
t→∞

Ct

(2 ln t)
3
2

≤ lim sup
t→∞

C+
t

(2 ln t)
3
2

= 1 a.s. (4.18)

To deduce the second equality in (4.15), we need to prove the opposite inequality in (4.18). We
can see that the equality (4.18) holds for −Ct, by symmetry of (4.16), and it implies that

lim
t→∞

ρ e(
α+1
2
−β)t sgn(Ct)|Ct|

α+2
3 = 0 a.s. (4.19)

Let u ≥ 0 be and let us introduce the pathwise unique strong solution of equation

dCt(u) = 3Ct(u)
2
3 dWt + 3

(
Ct(u)

1
3 − Ct(u)

2
− 1
)
dt, Cu(u) = Cu.

We shall prove that for all t ≥ u,

Ct(u) ≤ Ct a.s. on Ωu :=
{

sup
t≥u

ρ e(
α+1
2
−β)t |Ct|

α+2
3 ≤ 1

}
. (4.20)

Indeed, we introduce the stopping time τu defined by

τu := inf
{
t ≥ u : ρ e(

α+1
2
−β)t |Ct|

α+1
3 > 1

}
.

Using again the comparison theorem in [10], p.437, and a classical argument of localisation, we
obtain C•∧τu(u) ≤ C•∧τu a.s. Since {τu = ∞} = Ωu we deduce (4.20). By applying Motoo’s
theorem to C(u) and by using (4.19), we get

1 = lim sup
t→∞

Ct(u)

(2 ln t)
3
2

≤ lim sup
t→∞

Ct

(2 ln t)
3
2

a.s. on Ωu, and P(∪u≥0Ωu) = 1.

The opposite inequality in (4.18) is obtained and the proof of (4.15) is finished.
Finally, to conclude that X is recurrent in R, it suffices to replace X by −X in the second

equality in (4.12). This is possible by symmetry of equation (2.1). �
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Proof of Theorem 4.7. Let us note that, for α ∈ (−1, 1], the proof is exactly the same as the
proof of Theorem 4.6, while the proof for α ∈ (−∞,−1] follows some similar steps.

Let us only bring out the differences for α ∈ (−∞,−1]. We consider again the couple
(X(e), U) and we perform the Step a) in the proof of Theorem 4.6 with ((X(e))3, U3) replaced
by (|X(e)||α|+1, |U ||α|+1) =: (C,Q) (to avoid the singularity) . It follows that (C,Q) is asymp-
totically time-homogeneous and L(|G||α|+1)-ergodic. Here Q and C are weak solutions of

dQt = (|α|+ 1)Q
|α|
|α|+1

t dWt +
|α|+ 1

2

(
|α|Q

|α|−1
|α|+1

t −Qt
)
dt, Q0 = x

|α|+1
0 ,

and

dCt = (|α|+ 1)C
|α|
|α|+1

t dWt +
|α|+ 1

2

[
|α|C

|α|−1
|α|+1

t − Ct + 2ρ e(
α+1
2
−β)tC

|α|+α
|α|+1

t

]
dt, C0 = x

|α|+1
0 .

As in Step b) in the proof of Theorem 4.6 we can show that Ct is bounded in probability, by
comparing Ct with the ergodic nonnegative diffusion satisfying

dC+
t = (|α|+ 1)(C+

t )
|α|
|α|+1dWt +

|α|+ 1

2

(
|α|(C+

t )
|α|−1
|α|+1 − C+

t + 2ρ (C+
t )
|α|+α
|α|+1

)
dt, C+

0 = x
|α|+1
0 .

Lemma 4.5 applies and we get the first equality in (4.13). Finally, as in Step c) of the cited
proof, by applying Motoo’s theorem to Qt and C+

t and by comparison theorem we can obtain

1 = lim sup
t→∞

Qt

(2 ln t)
|α|+1

2

≤ lim sup
t→∞

Ct

(2 ln t)
|α|+1

2

≤ lim sup
t→∞

C+
t

(2 ln t)
|α|+1

2

= 1 a.s.

We deduce the second equality in (4.13).
If α < −1, let X̃(γ) := 1/X(γ) be the pathwise unique nonnegative strong solution of

dX̃
(γ)
t = (X̃

(γ)
t )2 dWt +

(
(X̃

(γ)
t )3 − ρ (X̃

(γ)
t )2−α +

γ X̃
(γ)
t

2(1− (1− γ)t)

)
dt, X̃

(γ)
0 :=

1

x0
.

Recall that X(γ) is the pathwise unique nonnegative strong solution of (2.12). Consider also the
pathwise unique nonnegative strong solution Ỹ of

dỸt = Ỹ 2
t dWt +

(
Ỹ 3
t − ρ Ỹ 2−α

t +
|γ| Ỹt

2

)
dt, Ỹ0 :=

1

x0
.

By comparison between X̃(γ) and Ỹ , and by applying Motoo’s theorem to Ỹ , we deduce

lim inf
t→∞

Xt

Lρ,α,β(t)
=

(
lim sup
s→∞

X
(γ)
s

(cρ,α ln s)
1

|α+1|

)−1
≥
(

lim sup
s→∞

Ỹs

(cρ,α ln s)
1

|α+1|

)−1
= 1 a.s.

In previous relation the first equality was obtained by using the change of time s = ϕ−1γ (t)
defined in (2.11). Moreover, if α = −1, the point 0 is recurrent for X. By (4.13), we get the
recurrent feature in [0,∞). Besides, we obtain from (4.14) thatX is transient, when β ∈ (−∞, 0).
Furthermore, if β = 0, X is an homogeneous diffusion and by standard criteria, using the scale
function, we can see that X is recurrent in (0,∞). If β ∈ [0,∞), by comparison theorem with
the process obtained for β = 0, we get that X is recurrent in (0,∞). The proof of ii) is complete.
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If α ∈ (1,∞), consider X(γ) = Φγ(X) and b the respective solutions of equations (2.14)
and (2.17). Denote by ηe the explosion time of X(γ) and recall that {ηe ≥ t1} = {τe = ∞},
P(ηe = t1) = 0 (Lemma 3.8) and limt→t1 bt = 0 a.s. By using (3.5),

P
(

lim
t→t1

X
(γ)
t = 0, ηe ≥ t1

)
= E

(
1{

lim
t→t1

bt = 0
} E(t1)

)
= E(E(t1)) = P(ηe ≥ t1).

By change of time, we get

lim
t→∞

Xt

t
β
α+1

= lim
t→t1

X
(γ)
t = 0 a.s. on {τe =∞}. (4.21)

Therefore

lim
t→∞

1√
t

∫ t

1
ρ
|Xs|α
sβ

ds = lim
t→∞

1√
t

∫ t

1
ρ

∣∣∣∣ Xs

s
β
α+1

∣∣∣∣α s− β
α+1 ds = 0 a.s. on {τe =∞}.

We deduce that X satisfies the iterated logarithm law in (4.12) under the conditional probability
of nonexplosion. Hence it is recurrent in R. We shall prove the convergence in distribution (4.12)
under the conditional probability of nonexplosion. For this end, it suffices to show that

lim
s→∞

P(X(e)
s > x | σe =∞) =

1√
2π

∫ ∞
x

exp

(
−y

2

2

)
dy. (4.22)

Here σe denotes the explosion time of X(e) = Φe(X), the solution of (2.6). Note that Lemma
4.5 does not apply directly to (X(e), U), since σe could be finite with positive probability. By
using (4.21), we remark that

lim
s→∞

ρ e(
α+1
2
−β)s|X(e)

s |α = lim
t→∞

ρ t(
1
2
− β
α+1)

∣∣∣∣ Xt

t
β
α+1

∣∣∣∣α = 0 a.s. on {σe =∞}. (4.23)

Let ε > 0, v ≥ 0 be and denote U (±ε) the pathwise unique strong solutions of equations

dU (±ε)
s = dWs −

U
(±ε)
s

2
ds ± ε ds, U (±ε)

v = X(e)
v 1{σe>v}.

It is classical that U (±ε) is Feller and ergodic. Furthermore, the strong mixing property holds
(see [11], Theorem 20.20, p. 408), hence we obtain

lim
s→∞

P(U (±ε)
s > x | Ωε

v) = F∓ε(x) :=
1√
2π

∫ ∞
x

exp

(
−(y ∓ ε)2

2

)
dy, (4.24)

with
Ωε
v :=

{
sup
s≥v

ρ e(
α+1
2
−β)s|X(e)

s |α ≤ ε
}
.

Similarly as for (4.20), we can show, by using comparison theorem and a classical argument of
localisation, that, for all s ≥ v, U (−ε)

s ≤ X(e)
s ≤ U (+ε)

s a.s. on Ωε
v. We deduce, from (4.24),

F+ε(x) ≤ lim inf
s→∞

P(X(e)
s > x | Ωε

v) ≤ lim sup
s→∞

P(X(e)
s > x | Ωε

v) ≤ F−ε(x). (4.25)

Thanks to (4.23) the set of nonexplosion is {σe = ∞} = ∪v≥0Ωε
v. Letting v → ∞, and then

ε→ 0 in (4.25), we deduce (4.22).
To finish the proof, we need to study the process X conditionally to {τe < ∞} and prove

that it satisfies (4.10). The method is the same as in the proof of Theorem 4.2: we show that

|X(e)
t | ∼t→∞

1

(ρ(α− 1)(ηe − t))
1

α−1

a.s. on {ηe <∞},

and we conclude by change of time. �
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4.3 Behaviour under the critical line: 2β < α + 1

In the attractive case, by using similar techniques as in the proofs of theorems 4.6 and 4.7
we shall prove that the asymptotic behaviour of equation (2.13) is related to the asymptotic
behaviour of the time-homogeneous equation (2.16). By change of time, we shall obtain the
asymptotic behaviour for (2.1).

Theorem 4.9 (Attractive case). If (ρ, α, β) ∈ P− and 2β ∈ (−∞, α+ 1), X is recurrent in R,
if β ∈ [0,∞), and X converges a.s. towards 0, if β ∈ (−∞, 0). Moreover,

lim
t→∞

Xt

t
β
α+1

L
= Πρ,α and lim sup

t→∞

Xt

Lρ,α,β(t)
= 1 a.s. (4.26)

Theorem 4.10 (Repulsive case). If (ρ, α, β) ∈ P+ and 2β ∈ (−∞, α + 1), X is transient.
Moreover,

i) if α ∈ (−∞, 1), it satisfies

lim
t→∞

|Xt|
t
1−β
1−α

=
(ρ(1− α)

1− β
) 1

1−α a.s.; (4.27)

ii) if α ∈ (1,∞), it satisfies

|Xt| ∼
t→∞

ϕ
γ

α−1
γ ◦ ϕ−1γ (τe) · τ

γ
2
e

(ρ(α− 1)(τe − t))
1

α−1

a.s., (4.28)

where ϕγ and γ are given in (2.11);

iii) if α = 1, it satisfies

lim
t→∞

Xt

exp
(
ρ t1−β

1−β

) = G a.s., (4.29)

where G ∼ N (m,σ2), with m := x0 exp( ρ
β−1) and σ2 :=

∫∞
1 exp(2ρ s

1−β

β−1 )ds.

Remark 4.11. Again, one finds a similar result as in Theorem 1 ii) from [13], p. 951, con-
cerning the transient feature of the process.

Proof of Theorem 4.9. Let X(γ) = Φγ(X) and H be the solutions respectively of (2.13) and
(2.16). Equalities in (4.26) are equivalent to

lim
t→∞

X
(γ)
t

L
= S and lim sup

t→∞

X
(γ)
t

(cρ,α ln t)
1

α+1

= 1 a.s., with S ∼ Πρ,α. (4.30)

Note that H satisfies these equalities. To prove (4.30) we can follow similar Steps a)-c) as in
the proof of Theorem 4.6, by considering C := (X(γ))3 and Q := H3, which are the pathwise
unique strong solutions of

dQt = 3Q
2
3
t dWt + 3

(
ρ sgn(Qt)|Qt|

α+2
3 +Q

1
3
t

)
dt, Q0 = x30,

and
dCt = 3C

2
3
t dWt + 3

(
ρ sgn(Ct)|Ct|

α+2
3 + C

1
3
t −

γ Ct
2(1− (1− γ)t)

)
dt, C0 = x30.
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As in Step a) we get that (C,Q) is asymptotically homogeneous and L(S3)-ergodic. The argu-
ments of the corresponding Step b) are going on as follows. Since ρ is negative, it is not difficult
to prove that X2

t ≤ W̃ 2
t , t ≥ 0, where W̃t is a Brownian motion. We obtain by using the change

of time s = ϕ−1γ (t) and the iterated logarithm law that

lim sup
t→∞

Ct

(2t ln ln t)
3
2

= lim sup
s→∞

X3
s(

2
1−γ s ln ln s

) 3
2

≤ (1− γ)3 a.s. (4.31)

Let θ ∈ (1/3, (α+ 2)/3) be. Thanks to (4.31), we deduce

lim
t→∞

1

|Ct|θ
· γ Ct

1 + (1− γ)t
= 0 a.s. (4.32)

Let v ≥ 0 be and introduce C± the pathwise unique strong solution of

dC±t = 3 (C±t )
2
3dWt + 3

(
ρ sgn(C±t )|C±t |

α+2
3 + (C±t )

1
3 ± |C±t |θ

)
dt, C±v = Cv.

As for the proof of comparison (4.20) we can prove that for all s ≥ v,

C−t ≤ Ct ≤ C+
t a.s. on Ωv :=

{
sup
t≥v

1

|Ct|θ
· γ Ct

1 + (1− γ)t
≤ 1
}
. (4.33)

By (4.32), for any ε > 0, we can choose v ≥ 0 such that P(Ωv) ≥ 1 − ε. Moreover, there
exists r ≥ 0 such that for all t ≥ v, P(|C±t | ≥ r) ≤ ε since C± is an ergodic diffusion (by
computation of the speed measure). Combining the latter inequality with (4.33) which holds on
Ωv, we obtain that P(|Ct| ≥ r) ≤ 2ε, for all t ≥ v and therefore we conclude that C is bounded
in probability. Finally, Step c) is a consequence of Motoo’s theorem applied to C± and to the
preceding comparison,

1 = lim sup
t→∞

C−t

(cρ,α ln t)
3

α+1

≤ lim sup
t→∞

Ct

(cρ,α ln t)
3

α+1

≤ lim sup
t→∞

C+
t

(cρ,α ln t)
3

α+1

= 1 a.s.

This ends the proof of (4.30). To get the recurrence feature or the convergence toward 0 we use
the second equality in (4.26) with X and −X. �

Proof of Theorem 4.10. Assume that α ∈ (−∞, 1). To simplify the computations, let us
denote the limit and the exponent of t in (4.27), respectively by

` :=
(ρ(1− α)

1− β
) 1

1−α and ν :=
1− β
1− α .

If we set St := X2
t /t

2ν , it suffices to verify that limt→∞ St = `2 a.s., that is, for all ε > 0,

lim sup
t→∞

St ≤ `2 + 3ε and lim inf
t→∞

St ≥ `2 − 3ε a.s. (4.34)

We shall prove only the first inequality in (4.34), the second one being obtained in a similar way.
We split the proof of this inequality in four steps.

Step a). We begin by proving that, for all ε > 0,

{t ≥ 1 : St ≤ `2 + ε} is unbounded a.s. (4.35)
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For this end, set ηu := inf
{
v ≥ u : Sv ≤ `2 + ε

}
, u ≥ 1. Then, it suffices to prove that for all

u ≥ 1 large enough, ηu <∞ a.s. By using Ito’s formula, we can see that

St∧ηu = Su +

∫ t∧ηu

u
LG(s,Xs)ds+

∫ t∧ηu

u
∂xG(s,Xs) dBs := Su +Mt +At, (4.36)

where G(t, x) := x2/t2ν and where L is given by (3.3). Moreover, we can see that there exist
s0 ≥ 1 and c > 0 such that, for all s ≥ s0 and x ∈ R, for which G(s, x) ≥ `2 + ε and

LG(s, x) =
2ρ

s

(
G(s, x)

α−1
2 − `α−1

)
G(s, x) +

1

s2ν
≤ −c

s
≤ 0. (4.37)

This implies that the local martingale part Su + M of the non-negative semimartingale in
(4.36), together with S•∧ηu itself, are nonnegative supermartingales for all u ≥ s0. Therefore,
the bounded variation part A will be a convergent process as the difference of two convergent
supermartingales. Thanks to (4.37), this is possible if and only if ηu <∞ a.s.

Step b). We introduce an increasing sequence of stopping times as follows:

τ1 := inf{t ≥ s0 : St = `2 + 2ε}, σ1 := inf
{
t ≥ τ1 : St ∈

{
`2 + ε, `2 + 3ε

}}
and for every integer n ≥ 2,

τn := inf{t ≥ σn−1 : St = `2 + 2ε}, σn := inf
{
t ≥ τn : St ∈

{
`2 + ε, `2 + 3ε

}}
.

`2
t

St

`2 + ε

`2 +2ε

`2 +3ε

τ1 σ1 τ2 σ2 τ3 σ3 τ4 σ4

Figure 3: The increasing sequence of stopping times

Set F := ∩n≥1{τn <∞}. Thanks to (4.35), we obtain that lim supt→∞ St ≤ `2 + 2ε a.s. on F c.
To prove the first inequality in (4.34), we need to show that

lim sup
t→∞

St ≤ `2 + 3ε a.s. on F, or, equivalently, 1F
∑
n≥1

1{Sσn=`2+3ε} <∞ a.s.

By using a conditional version of the Borel-Cantelli lemma (see, for instance, Corollary 7.20
in [11], p. 131), it is equivalent to prove that

∞∑
n=1

P
(
Sσn = `2 + 3ε, τn <∞ | Fτn

)
<∞ a.s. (4.38)

Step c). We show that there exist positive constants λ1 and λ2 such that for all n ≥ 1,

P
(
Sσn = `2 + 3ε, τn <∞ | Fτn

)
≤ λ1τ( 1

2
−ν)

n exp
(
−λ2τ2ν−1n

)
a.s. on {τn <∞}. (4.39)

24



To this end, let us denote by Ps,x the distribution of the weak solution of (2.1) such that Xs = x.
The strong Markov property applies and this yields

P
(
Sσn = `2 + 3ε, τn <∞ | Fτn

)
= Pτn,Xτn

(
Sσn = `2 + 3ε

)
a.s. on {τn <∞}.

As in (4.36), we can write under the conditional probability Pτn,Xτn , the canonical decomposition
St∧σn = Sτn + Mn

t + Ant , sum of a local martingale and a bounded variation process. Besides,
we can show that vn := 〈Mn〉∞ satisfies

vn =

∫ σn

τn

4Su
u2ν

du ≤
∫ ∞
τn

4(`2 + 3ε)

u2ν
du =

4(`2 + 3ε)

(2ν − 1)τ2ν−1n
≤ 4(`2 + 3ε)

(2ν − 1)s2ν−10

=: v0.

Then, by the Dambis-Dubins-Schwarz theorem, there exists a standard Brownian motion Wn

(under the conditional probability Pτn,Xτn ) such that Mn = Wn
〈Mn〉 and since An is strictly

negative, we can see that{
sup

0≤t≤vn
Wn
t < ε

}
⊂
{

sup
t≥τn

Mn
t < ε

}
⊂
{
Sσn = `2 + ε

}
.

It is classical that sup{Wn
t : 0 ≤ t ≤ vn} L= |Gn|, with Gn

L
= N (0, vn), under the conditional

probability Pτn,Xτn and therefore we obtain

Pτn,Xτn (Sσn = `2 + 3ε) = 1− Pτn,Xτn (Sσn = `2 + ε) ≤ Pτn,Xτn (|Gn| ≥ ε/
√
vn).

By the usual estimate of tails for the standard Gaussian random variables, we get (4.39).
Step d). To insure the convergence of the series in (4.38) we show that the sequence (τn)

increases to infinity sufficiently fast. More precisely, we show that there exists λ > 1 such that
τn ≥ λn τ1 a.s. on F . This inequality will be a consequence of a sharper form of the Borel-
Cantelli lemma (see, for example, Theorem 1 in [5], p. 800) once we show that there exist some
constants q > 1 and p > 0 such that for all n ≥ 1,

P(τn+1 ≥ q τn | Fτn) ≥ Pτn,Xτn (σn ≥ q τn) ≥ p a.s on {τn <∞}. (4.40)

In opposite to (4.37), we can see that there exists a constant k > 0 such that for all t ≥ 1 and
x ∈ R, for which G(t, x) ≤ `2 + 3ε, LG(t, x) ≥ −k/t. We deduce that for all t ∈ [τn, qτn],

−ε
2
≤ k ln

(τn
t

)
≤ Ant ≤ 0, with q := e

kε
2 > 1.

By using this inequality, we can write

{σn ≥ qτn} ⊃
{

sup
τn≤t≤qτn

|Mn
t | <

ε

2

}
⊃
{

sup
0≤t≤v0

|Wn
t | <

ε

2

}
.

Therefore, inequality (4.40) is satisfied with the deterministic positive constant

p := Pτn,Xτn

(
sup

0≤t≤v0
|Wn

t | <
ε

2

)
= P

(
sup

0≤t≤v0
|Bt| <

ε

2

)
.

Here B denotes a standard Brownian motion. The sharper form of the Borel-Cantelli lemma
applies and we obtain that τn ≥ λn τ1 a.s. on F . We deduce (4.38) and (4.27) holds.

Assume that α ∈ (1,∞). The proof of (4.28) follows the same lines as the proof of (4.10) in
Theorem 4.2. We show that X(γ) = Φγ(X) satisfies

|X(γ)
s | ∼s→∞

1

(ρ(α− 1)(τe − s))
1

α−1

a.s., when α ∈ (1,∞),
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and we conclude by applying the change of time t = ϕ−1γ (s).
Finally, assume that α = 1. The same ideas as for the proof of the point v) of Theorem

(4.2) are employed. By Ito’s formula and the Dambis-Dubins-Schwartz theorem there exists a
standard Brownian motion W such that

Xt

v(t)
=

x0
v(1)

+ B̃φ(t), with φ(t) :=

∫ t

1

ds

v(s)2
ds and v(t) := exp

(
ρ
t1−β

1− β
)
.

Since

φ(t) ∼
t→∞


t if β ∈ (1,∞)
σ2 if ρ ∈ (0,∞) and β ∈ (−∞, 1)

2|ρ|tβv(t)−2 if ρ ∈ (−∞, 0) and β ∈ (−∞, 1),

by using the usual properties of the Brownian motion we can get the convergence in distribution
and the pathwise largest deviations. The recurrent or transient features are then deduced. �

5 Appendix

Proof of Lemma 3.8. To begin with, let us recall that ρ ∈ (0,∞), α ∈ (1,∞), 2β ∈ (α+1,∞),
that γ = 2β/(α+1), t1 = 1/(γ−1), δ = γ/2(γ−1), and that X(γ)

s is the pathwise unique strong
solution of equation (2.14), which explosion time is ηe ∈ [0, t1]∪ {∞}. The goal is to prove that
ηe 6= t1 a.s. By Ito’s formula, we can see that

dX(γ,t1)
s = (t1 − s)

1
α−1dWs + d(s,X(γ,t1)

s )ds, with X(γ,t1)
s := (t1 − s)

1
α−1X(γ)

s ,

and

d(s, x) := ρ
x
(
|x|α−1 − `α−1

)
t1 − s

and ` :=
(1 + δ(α− 1)

ρ(α− 1)

) 1
α−1 ∈ (0,∞).

Roughly speaking, since x · d(s, x) ≥ 0 (respectively ≤ 0), according as |x| ≥ ` (respectively
≤ `), 0,−∞ and∞ are “attractive” levels, whereas −` and ` are “repulsive” levels for the process
X(γ,t1). The strategy of the proof is as follows: firstly, we show that

lim
s→t1

|X(γ,t1)
s | ∈ {0, `,∞} a.s. on F := {ηe = t1}. (5.1)

Secondly, we shall prove that the following three events are of probability zero:

F0 := F ∩
{

lim
s→t1

|X(γ,t1)
s | = 0

}
, F` := F ∩

{
lim
s→t1

|X(γ,t1)
s | = `

}
and,

F∞ := F ∩
{

lim
s→t1

|X(γ,t1)
s | =∞

}
. (5.2)

We stress that the following reasoning will be performed by taking place on the event F . For
simplicity, this condition will be understood and will dropped along the following five steps.

Step a). We verify (5.1). Introduce E :=
{
ω ∈ F : lim infs→t1 X

(γ,t1)
s < lim sups→t1 X

(γ,t1)
s

}
.

Fix ω ∈ E and suppose that lim sups→t1 X
(γ,t1)
s (ω) > `. We can pick two sequences of real

numbers (which depends on ω), (sn) and (un), such that 0 ≤ un ≤ sn < t1 for all integers n,
limn→∞ un = t1, and

X(γ,t1)
un (ω)−X(γ,t1)

sn (ω) =
1

2

(
lim sup
s→t1

X(γ,t1)
s (ω)− `

)
> 0.
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Moreover, this choice could be done such that for any s ∈ [un, sn], X(γ,t1)
s (ω) ≥ `. Denote by M

the martingale part of X(γ,t1). Since the drift d(s, x) is nonnegative for all x ≥ `, we deduce

|Msn(ω)−Mun(ω)| =
∣∣∣X(γ,t1)

un (ω)−X(γ,t1)
sn (ω) +

∫ sn

un

d(s,X(γ,t1)
s (ω))ds

∣∣∣
≥ 1

2

(
lim sup
s→t1

X(γ,t1)
s (ω)− `

)
> 0.

A similar argument works when 0 < lim sups→t1 X
(γ,t1)
s (ω) ≤ `, but also for the two symmetric

situations lim infs→t1 X
(γ,t1)
s (ω) < −` and −` ≤ lim sups→t1 X

(γ,t1)
s (ω) < 0. This means that

lim inf
n→∞

|Msn(ω)−Mun(ω)| > 0, a.s. on E.

Since M is a.s. uniformly continuous on [0, t1], necessarily P(E) = 0. We obtain equality (5.1)
by noting that

lim
s→t1
|d(s,X(γ,t1)

s )| =∞ a.s. on F ∩
{

lim
s→t1
|X(γ,t1)

s | /∈ {0, `}
}
.

Step b). Note that hs := X
(γ)
s −Ws is the solution of the ordinary differential equation

h′s = ρ sgn(hs +Ws)|hs +Ws|α − δ
hs +Ws

t1 − s
.

We re-write the latter equation

h′s = −ε1(X(γ,t1)
s ) · δ(hs +Ws)

t1 − s
, with ε1(x) := 1− ρ

δ
|x|α−1, (5.3)

and
h′s = ε2(X

(γ,t1)
s ) · ρ sgn(hs +Ws)|hs +Ws|α, with ε2(x) := 1− δ

ρ
|x|1−α. (5.4)

Step c). Recall that ηe is the explosion time of X(γ). If we prove that X(γ) is bounded on
[0, t1], a.s. on F0, necessarily P(F0) = 0. Since W is a.s. continuous on the compact [0, t1], it
suffices to prove that h is bounded on [0, t1], a.s. on F0. Set κ := sups∈[0,t1] |Ws|. We note that

lims→t1 ε1(X
(γ,t1)
s ) = 1 a.s. on F0. Therefore, for any ω ∈ F0, there exists u ∈ [0, t1) such that,

for all s ∈ [u, t1), hs(ω)h′s(ω)1{|hs(ω)|≥κ} ≤ 0, by using (5.3). This implies that h2s(ω) is bounded
on [0, t1] and we are done.

Step d). If we prove that lims→t1 |X
(γ,t1)
s | = (ρ(α − 1))

1
1−α a.s. on F∞, then, necessarily

P(F∞) = 0. Clearly, lims→t1 ε2(X
(γ,t1)
s ) = 1 a.s. on F∞. Then, by using (5.4) and the fact that

W is bounded on [0, t1],

|hs|1−α
α− 1

=

∫ t1

s

h′u
sgn(hu)|hu|α

du ∼
s→t1

ρ(t1 − s), a.s. on F∞.

To conclude, it suffices to recall that X(γ,t1)
s = (t1 − s)

1
α−1 (hs +Ws).

Step e). Similarly, if we prove that lims→t1 |X
(γ,t1)
s | = ∞ a.s. on F`, then, necessarily

P(F`) = 0. First, we show that

lim
s→t1

(X(γ,t1)
s − `)2 =∞, a.s. on F+

` := F` ∩
{

lim
s→t1

X(γ,t1)
s = `

}
. (5.5)
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Denote Ks := (X
(γ,t1)
s − `)2. By Ito’s formula, we can write

dKs = 2(t1 − s)
1

α−1

√
Ks dBs +

(
2q(X(γ,t1)

s )
Ks

t1 − s
+

1

2
(t1 − s)

2
α−1

)
ds,

where

Bs :=

∫ s

0
sgn(Ku)dWu and q(x) := ρ x

|x|α−1 − `α−1
x− l .

Introduce, for v ∈ [0, t1), Cs(v) the pathwise unique strong solution of

dCs(v) = 2(t1 − s)
1

α−1

√
Cs(v) dBs +

(
q∞

Cs(v)

t1 − s
+

1

2
(t1 − s)

2
α−1

)
ds, Cv(v) = Kv1{ηe>v},

where q∞ := limx→` q(x) = ρ(α− 1)`α−1. By comparison and localisation (see also the proof of
(4.20)), we can show that for all s ∈ [v, t1),

Ks ≥ Cs(v) a.s. on Ωv := F+
` ∩

{
inf

v∈[0,t1)
|2q(X(γ,t1)

s )| ≥ q∞
}
.

By Ito’s formula, the law of the process C(v) equals to the law of the square of the unique weak
solution Q(v) of the equation

dQs(v) = (t1 − s)
1

α−1dBs +
q∞
2

Qs(v)

t1 − s
ds, Qv(v) =

√
Cv(v).

Since Q(v) is the solution of a linear equation, it is not difficult to see that lims→t1 |Qs(v)| =∞
a.s. and then we deduce that lims→t1 Cs(v) =∞ a.s. Hence, for any v ∈ [0, t1), lims→t1 Ks =∞
a.s. on Ωv. Since lims→t1 2q(X

(γ,t1)
s ) > q∞ a.s. on F+

` we obtain that lims→t1 Ks = ∞ a.s. on
∪v∈[0,t1)Ωv = F+

` , which is (5.5). We conclude that P(F` ∩ {lims→t1 X
(γ,t1)
s = `}) = 0. Clearly

by similar arguments, we can prove that P(F` ∩ {lims→t1 X
(γ,t1)
s = −`}) = 0. Hence P(F`) = 0.

The proof of the lemma is now complete. �

Proof of Lemma 4.5. Denote by Pu,z the distribution of the diffusion Z with Zu = z and
{Tu,s : 0 ≤ u ≤ s} the associated time-inhomogeneous semi-group. Similarly, denote by Pz the
distribution of the diffusion H starting from z at initial time and {Ts : s ≥ 0} the associated
semi-group. Clearly, the diffusion coefficient (s, z) 7→ a(u+s, z) and the drift (s, z) 7→ d(u+s, z)
of the diffusion s 7→ Zu+s satisfy the hypothesis of Theorem 11.1.4 in [17], p. 264. We deduce
that, for every f ∈ Cb([0,∞);R) and s ∈ [0,∞),

lim
u→∞

Tu,u+sf(z) = Tsf(z) uniformly in z on compact subsets of R. (5.6)

Moreover,
lim
s→∞

Tsf(z) = Π(f) uniformly in z on compact subsets of R. (5.7)

Indeed, assume that z belongs to the compact set [b, c]. By using the strong Markov property,
we can prove that for all s ∈ [0,∞) and v ∈ R,

Pb(Hs > v) ≤ Pz(Hs > v) ≤ Pc(Hs > v).

By using the ergodic theorem and these last inequalities we get the uniform convergence on
compact subsets of R in (5.7). Besides, by the Markov property, for all s, u ∈ [0,∞),

T0,u+sf(z0)−Π(f) = T0,u [Tu,u+sf − Tsf ] (z0) + T0,u [Tsf −Π(f)] (z0)
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and clearly, for arbitrary r, s, u nonnegative real numbers,

|T0,u+sf(z0)−Π(f)| ≤ sup
z∈[−r,r]

{|Tu,u+sf(z)−Tsf(z)|+ |Tsf(z)−Π(f)|}+ 4‖f‖∞Pz0(|Zu| ≥ r).

Thanks to (5.6) and (5.7), for all r, ε > 0 there exists s0, u0 ∈ [0,∞) such that for all u ≥ u0,

|T0,u+s0f(z0)−Π(f)| ≤ ε+ 4‖f‖∞ sup
s≥0

P(|Zs| ≥ r).

Since Z is bounded in probability we deduce that limu→∞T0,uf(z0) = Π(f). �
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