Formulaire de probabilités

Master MIGS/PMG 2025-2026

Yoann Offret

Table des matières

1	Lemmes de Borel-Cantelli	1
2	Convergence en loi	1
3	Loi forte des grands nombres	2
4	Théorème central limite	2
5	Espérance conditionnelle	3
6	Noyaux et probabilités conditionnelles	3
7	Chaînes de Markov 7.1 Propriétés générales	
8	Martingales	7

1 Lemmes de Borel-Cantelli

Soit $(A_n)_{n\geq 0}$ une famille d'événements. Alors :

$$\sum_{n\geq 0} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A_n \text{ infiniment souvent}) = 0.$$

Si les $(A_n)_{n\geq 0}$ sont indépendants et $\sum_{n\geq 0} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A_n \text{ infiniment souvent}) = 1.$

Ici A_n infiniment souvent signifie $\limsup_{n\to\infty}A_n=\bigcap_{m\geq 1}\bigcup_{n\geq m}A_n$. En particulier, si (A_n) sont indépendants, alors $\mathbb{P}(A_n\ i.s.)=1$ ssi $\sum_n\mathbb{P}(A_n)=\infty$ (et 0 sinon).

2 Convergence en loi

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires et X une variable aléatoire, toutes deux à valeurs dans \mathbb{R}^d . On dit que X_n converge en loi vers X lorsque l'une des propriétés équivalentes suivantes est vérifiée :

1. Pour toute fonction $f: \mathbb{R}^d \to \mathbb{R}$ continue et bornée,

$$\mathbb{E}[f(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[f(X)].$$

2. Lorsque d=1, pour tout point de continuité t de la fonction de répartition de X,

$$\mathbb{P}(X_n \le t) \xrightarrow[n \to \infty]{} \mathbb{P}(X \le t).$$

3. (Théorème de Lévy) Pour tout $t \in \mathbb{R}^d$,

$$\mathbb{E}\left[e^{i\langle t, X_n\rangle}\right] \xrightarrow[n\to\infty]{} \mathbb{E}\left[e^{i\langle t, X\rangle}\right].$$

On note alors

$$X_n \xrightarrow[n \to \infty]{} X.$$

3 Loi forte des grands nombres

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires i.i.d. de même loi que X, à valeurs dans un espace mesurable E. Soit $f: E \to \mathbb{R}$ mesurable telle que $f(X) \in \mathbb{L}^1$. Alors

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow[n \to \infty]{p.s.} \mathbb{E}[f(X)] = \int_{E} f(x) \, \mathbb{P}_X(dx).$$

4 Théorème central limite

Soit $(X_n)_{n\geq 0}$ une suite de v.a. i.i.d. de même loi que X, à valeurs dans un espace mesurable E. Soit $f: E \to \mathbb{R}$ mesurable telle que $f(X) \in \mathbb{L}^2$. Alors, en posant

$$m = \mathbb{E}[f(X)]$$
 et $\sigma^2 = \mathbb{E}[f(X)^2] - (\mathbb{E}[f(X)])^2$

on a

$$\sqrt{n}\left(\frac{1}{n}\sum_{k=1}^n f(X_k) - m\right) \xrightarrow[n \to \infty]{} \mathcal{N}(0, \sigma^2).$$

Version multidimensionnelle : Si $f: E \to \mathbb{R}^d$ est mesurable et $f(X) \in \mathbb{L}^2$, on pose

$$m = \mathbb{E}[f(X)] \in \mathbb{R}^d, \qquad \Gamma = \mathbb{E}[(f(X) - m)(f(X) - m)^\top] \in \mathbb{R}^{d \times d}.$$

Alors

$$\sqrt{n}\left(\frac{1}{n}\sum_{k=1}^{n}f(X_k)-m\right) \xrightarrow[n\to\infty]{} \mathcal{N}_d(0,\Gamma),$$

où $\mathcal{N}_d(0,\Gamma)$ désigne la loi gaussienne centrée de matrice de covariance Γ.

5 Espérance conditionnelle

Définition : Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, $\mathcal{A} \subset \mathcal{F}$ une sous-tribu et Y une v.a.r.. On dit que $\mathbb{E}[Y|\mathcal{A}]$ est l'espérance conditionnelle de Y sachant \mathcal{A} si :

- $\mathbb{E}[Y|\mathcal{A}]$ est \mathcal{A} -mesurable,
- $\mathbb{E}[Y|\mathcal{A}]$ est \mathbb{L}^2 , positive ou \mathbb{L}^1 selon que $Y \in \mathbb{L}^2$, $Y \geq 0$ ou $Y \in \mathbb{L}^1$ respectivement,
- pour toute v.a. Z respectivement dans \mathbb{L}^2 , positive, ou bornée,

$$\mathbb{E}[YZ] = \mathbb{E}[\mathbb{E}[Y|\mathcal{A}]Z].$$

Remarques:

- Il suffit de vérifier l'égalité précédente pour $Z = \mathbf{1}_A$, $A \in \mathcal{A}$, ou même pour A appartenant à un π -système engendrant \mathcal{A} .
- En particulier, avec Z = 1, on retrouve $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|\mathcal{A}]]$.

Cas particulier : Si X est une v.a. à valeurs dans un espace mesurable E, on note

$$\mathbb{E}[Y|X] := \mathbb{E}[Y|\sigma(X)].$$

Il existe alors une fonction mesurable $\phi: E \to \mathbb{R}$ telle que $\mathbb{E}[Y|X] = \phi(X)$ et

$$\mathbb{E}[Yg(X)] = \mathbb{E}[\phi(X)g(X)]$$

pour toute fonction mesurable $g:E\to\mathbb{R}$ positive ou bornée. La fonction ϕ est unique \mathbb{P}_X -presque partout.

Propriété : Si X, Y sont indépendantes et $H: E \times F \to \mathbb{R}$ mesurable, alors

$$\mathbb{E}[H(X,Y) \mid X] = \phi(X), \quad \text{où} \quad \phi(x) = \mathbb{E}[H(x,Y)].$$

Procédure pratique:

- 1. Geler X = x.
- 2. Calculer $\mathbb{E}[H(x,Y)]$.
- 3. Dégeler : remplacer x par X.

6 Noyaux et probabilités conditionnelles

Définition : Soient (E, A) et (F, G) deux espaces mesurables. Un noyau de transition de E vers F est une application

$$N: E \times \mathcal{G} \longrightarrow [0, \infty]$$

telle que:

- 1. pour tout $x \in E$, l'application $B \mapsto N(x, B)$ est une mesure sur (F, \mathcal{G}) ,
- 2. pour tout $B \in \mathcal{G}$, l'application $x \mapsto N(x, B)$ est mesurable sur (E, \mathcal{A}) .

Autrement dit, c'est une famille de mesures $(N(x,\cdot))_{x\in E}$ qui varie de manière mesurable en x. Si $f: F \to \mathbb{R}$ est mesurable et $x \in E$, on définit

$$Nf(x) = \int_{F} f(y) N(x, dy),$$

lorsque cette intégrale est bien définie. On peut montrer que $x \mapsto Nf(x)$ est mesurable. Plus généralement, si $H: E \times F \to \mathbb{R}$ est mesurable, alors

$$x \longmapsto \int_F H(x,y) N(x,dy)$$

est mesurable (quand l'intégrale a un sens).

Définition (loi conditionnelle) : Soient X, Y des v.a. à valeurs respectivement dans E et F. On dit que la loi conditionnelle de Y sachant X est donnée par le noyau N si, pour toute fonction mesurable $f: F \to \mathbb{R}$ bornée ou positive,

$$\mathbb{E}[f(Y) \mid X] = Nf(X) = \int_F f(y) N(X, dy).$$

En particulier, on a N(x, F) = 1 $\mathbb{P}_X(dx)$ -presque partout. La loi conditionnelle est alors caractérisée par

$$\mathbb{E}[f(Y)g(X)] = \mathbb{E}[Nf(X)g(X)]$$

pour toutes fonctions muettes f et g appropriées. On dit abusivement que « la loi de Y sachant X = x est N(x, dy) », et on écrit parfois $\mathbb{E}[f(Y) \mid X = x] = Nf(x)$.

Propriété : Si $H: E \times F \to \mathbb{R}$ est mesurable et si la loi conditionnelle de Y sachant X est N, alors

$$\mathbb{E}[H(X,Y) \mid X] = \int_F H(X,y) N(X,dy).$$

Procédure pratique:

- 1. Geler X = x.
- 2. Calculer $\mathbb{E}[H(x, \widetilde{Y})]$ où $\widetilde{Y} \sim N(x, dy)$.
- 3. Dégeler : remplacer x par X.

On en déduit

$$\mathbb{E}[H(X,Y)] = \int_{E} \left(\int_{F} H(x,y) N(x,dy) \right) \mathbb{P}_{X}(dx),$$

c'est-à-dire, de manière concise,

$$\mathbb{P}_{(X,Y)}(dx\,dy) = \mathbb{P}_X(dx)\,N(x,dy).$$

7 Chaînes de Markov

7.1 Propriétés générales

Définition : Une suite $(X_n)_{n\geq 0}$ de v.a. à valeurs dans un espace mesurable E (espace d'états) est une *chaîne de Markov de noyau N sur E* si, pour tout $f: E \to \mathbb{R}$ mesurable positive ou bornée et tout $n \geq 0$, on a

$$\mathbb{E}[f(X_{n+1}) \mid \mathcal{F}_n] = Nf(X_n),$$

où $(\mathcal{F}_n)_{n\geq 0}$ est une filtration telle que X_n soit \mathcal{F}_n -mesurable. On peut toujours prendre $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$. Le noyau N représente la loi de X_{n+1} sachant (X_0, \dots, X_n) , qui ne dépend que de X_n . On note \mathbb{P}_{ν} , \mathbb{E}_{ν} la probabilité et l'espérance quand $X_0 \sim \nu$.

Cas dénombrable : Si $E = \{e_1, e_2, ...\}$ est dénombrable, le noyau N s'identifie à une matrice stochastique $P = (P(x, y))_{x,y \in E}$ avec $P(x, y) = N(x, \{y\})$. Alors

$$\mathbb{P}[X_{n+1} = x_{n+1} | X_n = x_n, \dots, X_0 = x_0] = P(x_n, x_{n+1}),$$

dès que $\mathbb{P}(X_0 = x_0, ..., X_n = x_n) > 0.$

En représentant les mesures comme vecteurs lignes et les fonctions comme vecteurs colonnes :

$$\mathbb{E}_{\nu}[f(X_n)] = \nu P^n f, \qquad \mathbb{E}_{x}[f(X_n)] = P^n f(x).$$

On a aussi

$$\mathbb{P}_{\nu}(X_0 = x_0, \dots, X_n = x_n) = \nu(x_0) P(x_0, x_1) \cdots P(x_{n-1}, x_n),$$

$$\mathbb{P}_{\nu}(X_n = y) = \sum_{x_0, \dots, x_{n-1} \in E} \nu(x_0) P(x_0, x_1) \cdots P(x_{n-1}, y).$$

Définition (irréductibilité) : On dit que la chaîne est *irréductible* si pour tous $x, y \in E$ il existe $n \ge 0$ tel que

$$P^n(x,y) > 0.$$

Autrement dit, à partir de tout état x, il est possible d'atteindre tout état y en un nombre fini d'étapes avec une probabilité positive.

Construction standard : Soient $H: E \times F \to E$ mesurable, $(U_n)_{n\geq 1}$ i.i.d. de loi sur F, et X_0 indépendante des U_n . En posant

$$X_{n+1} = H(X_n, U_{n+1}),$$

on obtient une chaîne de Markov dont le noyau est la loi de $H(x, U_1)$.

Définition (temps d'arrêt) : Une variable aléatoire $T: \Omega \to \mathbb{N} \cup \{\infty\}$ est un temps d'arrêt relativement à une filtration $(\mathcal{F}_n)_{n\geq 0}$ si, pour tout $n\geq 0$, on a

$$\{T \leq n\} \in \mathcal{F}_n.$$

Autrement dit, au temps n, on sait déjà si l'arrêt est survenu ou non.

Propriété (Markov forte): Si (X_n) est une chaîne de Markov de noyau N et T un temps d'arrêt alors $(X_{T+n})_{n\geq 0}$ est encore une chaîne de Markov de même noyau (conditionnellement à $T<\infty$). Plus précisément, pour tout $n\geq 0$ et $x\in E$,

$$\mathbb{E}_{\nu}[f(X_T, \dots, X_{T+n}) \mid T < \infty, X_T = x] = \mathbb{E}_x[f(X_0, \dots, X_n)].$$

7.2 Récurrence et transience

Définition : Un état $x \in E$ est dit *récurrent* si l'une des conditions équivalentes est satisfaite :

- 1. $X_n = x$ une infinité de fois p.s. sous \mathbb{P}_x .
- 2. Le temps de retour $T_x = \inf\{n \geq 1 : X_n = x\}$ est fini p.s. sous \mathbb{P}_x .
- 3. La somme $\sum_{k=0}^{\infty} \mathbb{P}_x(X_k = x) = \infty$.

Un état qui n'est pas récurrent est dit transient.

Propriété : Si la chaîne est irréductible, alors tous les états sont récurrents ou tous transients.

Exemple : Une chaîne de Markov sur un espace d'états fini possède au moins un état récurrent. Si elle est irréductible, elle est récurrente.

7.3 Mesure invariante

Définition : Une mesure μ sur E est dite *invariante* si

 $\mu N = \mu$, c'est-à-dire $\mu N f = \mu f \quad \forall f : E \to \mathbb{R}$ mesurable positive (ou bornée).

Si $\mu(E) = 1$, on dit que μ est une probabilité invariante.

Caractérisation : μ est invariante \iff $(X_0 \sim \mu \implies X_n \sim \mu, \ \forall n \geq 0).$

Cas dénombrable : Si P est la matrice de transition, alors μ est invariante si et seulement si $\mu P = \mu$.

Mesure réversible : μ est dite réversible si

$$\mu(x)P(x,y) = \mu(y)P(y,x) \quad \forall x, y \in E.$$

Toute mesure réversible est invariante.

Résultats importants :

- Si la chaîne est irréductible et récurrente, elle possède une unique mesure invariante non triviale (à un facteur près).
- Dans ce cas:

$$\mu(y) = \mathbb{E}_x \Big[\sum_{n=0}^{T_x - 1} \mathbf{1}_{\{X_n = y\}} \Big],$$

où x est un état récurrent arbitraire.

- Dichotomie : $\mu(E) < \infty \implies$ récurrence positive (existence d'une unique probabilité invariante). $\mu(E) = \infty \implies$ récurrence nulle.
- Si la chaîne est irréductible et admet une probabilité invariante, alors elle est récurrente positive.
- Dans le cas récurrent positif, pour tout état x,

$$\mu(x) = \frac{1}{\mathbb{E}_x[T_x]}.$$

— Si la chaîne est récurrente nulle, alors $\mathbb{E}_x[T_x] = \infty$.

7.4 Théorème ergodique

Si (X_n) est irréductible récurrente positive et μ sa probabilité invariante, alors pour toute loi initiale ν et tout $f \in \mathbb{L}^1(\mu)$:

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow[n \to \infty]{\mathbb{P}_{\nu\text{-p.s.}}} \int_{E} f \, d\mu.$$

En particulier, pour tout $x \in E$,

$$\frac{1}{n}\operatorname{card}\{k \le n - 1 : X_k = x\} \xrightarrow[n \to \infty]{\mathbb{P}_{\nu\text{-p.s.}}} \mu(x).$$

Si la chaîne est récurrente nulle, les convergences ont lieu vers 0.

7.5 Théorème de Perron–Frobenius

Définition : La période d'un état x est

$$d(x) = \operatorname{pgcd}\{n \ge 1 : P^{n}(x, x) > 0\}.$$

Propriété : Si la chaîne est irréductible, d(x) ne dépend pas de x; on parle de période de la chaîne. Si d = 1, la chaîne est dite *apériodique*.

Résultat: Soit (X_n) une chaîne irréductible, apériodique et récurrente positive de matrice de transition P et de probabilité invariante μ . Alors, pour toute loi initiale ν ,

$$X_n \xrightarrow[n \to \infty]{} \mu$$
, c.-à-d. $\mathbb{P}_{\nu}(X_n = x) \xrightarrow[n \to \infty]{} \mu(x)$.

Dans le cas fini, ce résultat s'obtient en étudiant le spectre de P, c'est un théorème d'algèbre linéaire.

8 Martingales

Définition : Une suite de v.a.r. $(X_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale, où $(\mathcal{F}_n)_{n\geq 0}$ est une filtration, si :

- 1. X_n est \mathcal{F}_n -mesurable;
- 2. $X_n \in \mathbb{L}^1$;
- 3. $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n.$

Si dans 3. on remplace = par \leq (resp. \geq), on parle de *sur-martingale* (resp. *sous-martingale*). Par défaut, on considère la filtration canonique $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$.

Propriété : Si (X_n) est une martingale et T un temps d'arrêt, alors $(X_{T \wedge n})_{n \geq 0} \mathbf{1}_{\{T < \infty\}}$ est encore une martingale. De même pour les sur- et sous-martingales. On note $a \wedge b$ le minimum de a et b.

Théorème de convergence presque sûre : Si (X_n) est une martingale (ou sur/sous-martingale) bornée dans \mathbb{L}^1 , c'est-à-dire

$$\sup_{n\geq 0} \mathbb{E}[|X_n|] < \infty,$$

alors il existe $X_{\infty} \in \mathbb{L}^1$ telle que

$$X_n \xrightarrow[n \to \infty]{p.s.} X_\infty.$$

Cette hypothèse est satisfaite notamment si :

- 1. (X_n) est bornée;
- 2. (X_n) est une sur-martingale positive;
- 3. (X_n) est une sous-martingale majorée par une variable intégrable.

Théorème de convergence dans \mathbb{L}^2 : Si (X_n) est une martingale bornée dans \mathbb{L}^2 , c'est-à-dire

$$\sup_{n\geq 0} \mathbb{E}[|X_n|^2] < \infty,$$

alors il existe $X_{\infty} \in \mathbb{L}^2$ telle que

$$X_n \xrightarrow[n \to \infty]{p.s.} X_\infty$$
 et $X_n \xrightarrow[n \to \infty]{\mathbb{L}^2} X_\infty$.

De plus,

$$X_n = \mathbb{E}[X_\infty \,|\, \mathcal{F}_n].$$