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Abstract

The Maximal Entropy Random Walk (MERW) is a natural process on a finite graph,
introduced a few years ago with motivations from theoretical physics. The construction of
this process relies on Perron-Frobenius theory for adjacency matrices.

Generalizing to infinite graphs is rather delicate, and in this article, We study in detail
specific models of the MERW on Z with loops, for both random and non-random loops.
Thanks to an explicit combinatorial representation of the corresponding Perron-Frobenius
eigenvectors, we are able to precisely determine the asymptotic behavior of these walks. We
show, in particular, that essentially all MERWs on Z with loops have positive speed.
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1 Introduction

1.1 Maximal Entropy Random Walks on finite and infinite graphs

Throughout this article, G is a strongly connected weighted directed graph with a countably
finite or infinite vertex set I. Below, we will mostly consider the case where I = Z or a finite
interval of Z. Loops and multiple edges are allowed.

Let A = (ai,j)i,j∈I be the associated weighted adjacency matrix; ai,j is non-negative and
represents the weight of the directed edge i → j. In the case where ai,j ≥ 0 is an integer k, we
interpret this as k edges with unit weight from i to j. When ai,j = 0, this indicates that there
is no edge from i to j.

If for all i ∈ I,
sup
i∈I

∑
j∈I

ai,j <∞, (1.1)

the standard random walk on G is the Markov chain with transition probabilities given by

pi,j =
ai,j∑
`∈I ai,`

. (1.2)

The standard random walk is a fundamental stochastic process in probability, statistical physics,
and network analysis. In this article, we consider a somewhat less well-known process: the
Maximal Entropy Random Walk (MERW).

Let us introduce this process. If G is finite, its construction relies on Perron-Frobenius
theory1. The Perron-Frobenius theorem ensures that the spectral radius λ of the finite non-
negative matrix A is an eigenvalue of A (resp. AT ) and that there exists a positive right (resp.
left) λ-eigenvector ψ = (ψi)i∈I (resp. ϕ = (ϕi)i∈I), unique up to a multiplicative constant (by
the connectedness of G).

TheMaximal Entropy Random Walk (MERW) associated with G is the discrete-time Markov
chain (Xn)n≥0 on G whose transition probabilities are given by

pi,j = ai,j
ψj
λψi

. (1.3)

(It is straightforward to check that (1.3) indeed defines a transition matrix.)
If all the sums

∑
j∈I ai,j for i ∈ I are equal to some r > 0, that is, if G is an r-regular graph,

then λ = r, and ψ ≡ 1 is a positive λ-eigenfunction. In this case, the MERW coincides with the
standard random walk (1.2). In the general case, these two processes are significantly different.
Note also that if the matrix A is symmetric, then ϕ = ψ (up to a positive constant), and it is
easy to see that π = ψ2 is a reversible measure.

In this setting, MERWs on finite graphs were introduced in [BDLW09]. What makes these
processes natural is that, as the name suggests, they maximize the entropy of trajectories (see
Proposition 1.3 below for a formal statement). The original motivation for MERWs seems to
trace back to the path-integral formalism in Quantum Mechanics (see [BDLW10, Sec. 2]), and
their origins also partly lie in MCMC methods [Het84]. More recently, MERWs have been
proposed for use in algorithms for detecting communities in complex networks [OB13].

The case where G is infinite is more subtle and has been addressed more recently. In order to
generalize (1.3), we need the theory of non-negative infinite matrices developed in [VJ67,VJ68].
Let a(n)

i,j be the (i, j)-th entry of the nth power An. Then, the quantity

λ = lim sup
n→∞

(
a

(n)
i,j

)1/n
(1.4)

1See [Bap10, Sec. 6.1] for a background on Perron-Frobenius in the context of graphs.
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does not depend on i, j ∈ I (see [VJ67, Th.A]). Moreover, assumption (1.1) guarantees that
0 < λ < ∞. The value of λ is sometimes referred to as the combinatorial spectral radius since
it indicates that the weighted number of trajectories of length n from the vertex i to j grows
approximately as λn as n goes to infinity. It plays the role of the Perron-Frobenius eigenvalue.

Regarding positive solutions of Aψ = λψ (or ATϕ = λϕ), there are mainly two cases to
distinguish, depending on whether

∞∑
n=0

a
(n)
i,j

λn
= +∞ (R-recurrence) or

∞∑
n=0

a
(n)
i,j

λn
< +∞ (R-transience). (1.5)

Remark 1.1. The letter R refers to the convergence parameter introduced by Vere-Jones [VJ67].
It is defined as the radius of convergence of the power series

∑
n≥0 a

(n)
i,j z

n, which in our setting
corresponds to R = 1/λ.

As noted in [VJ67], if one of these conditions holds for some i, j ∈ I, then it holds for all
i, j ∈ I. In each of these situations, we say that A, or equivalently the graph G, is R-recurrent
or R-transient.

In the R-recurrent case, there exists a unique (up to a multiplicative constant) positive right
(resp. left) λ-eigenfunction ψ (resp. ϕ).

By contrast, in the R-transient situation, neither existence nor uniqueness is guaranteed. In
that case, the set of positive solutions to Aψ = λψ, normalized such that ψo = 1 for some fixed
o ∈ I, is a convex set. As a consequence, this set can be described by the extremal solutions,
similarly to the Martin boundary associated with a transient Markov kernel.

We refer to [DO24] for a more comprehensive study of these situations and their consequences
for the corresponding MERWs.

Definition 1.2. Let A be an infinite weighted adjacency matrix satisfying (1.1), and let ψ be a
positive solution to Aψ = λψ, where λ is defined by (1.4).

The Maximal Entropy Random Walk (MERW) associated with ψ is the discrete-time Markov
chain (Xn)n≥0 on G whose transition probabilities are given by

pi,j = ai,j
ψj
λψi

. (1.6)

Equation (1.6) evokes of the well-known Doob h-transform, which is commonly used when
conditioning stochastic processes to remain within a specific domain (see [Doo01]; see also [DO24]
for further connections with MERW).

Let us state some fundamental known features of MERWs. To this end, let q be the kernel
of a Markov chain adapted to A, in the sense that ai,j = 0 ⇐⇒ qi,j = 0. If q is the kernel of a
positive recurrent Markov chain, with π as its invariant probability measure, then the (stationary
and asymptotic) entropy rate E(q) is defined by2

E(q) = −
∑
i,j∈I

πi qi,j log

(
qi,j
ai,j

)
.

Proposition 1.3 below shows that, as their name suggests, MERWs indeed maximize entropy.
Note that when the graph is finite, this can be obtained by standard optimization methods,
noting that log(λ) is an upper bound for E(q) (see [Dud12,Dix15]). Again, the theory is more
subtle for infinite graphs, and the situation was clarified in [DO24].

2Here we take, as usual, the convention 0 log(0) = 0.
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In the sequel, A is said to be positive (resp. null) R-recurrent when it is R-recurrent and,
for some (equivalently all) i, j ∈ I, one has

lim
n→∞

a
(n)
i,j

λn
6= 0

(
resp. lim

n→∞

a
(n)
i,j

λn
= 0

)
.

Proposition 1.3 (MERWs maximize entropy (see [DO24])). The supremum of E(q), among all
adapted positive recurrent Markov kernels q on G, is equal to log(λ), and one can even restrict the
supremum to all adapted positive recurrent Markov chains on finite strongly connected subgraphs
H ⊂ G. Furthermore:

1. If A is positive R-recurrent, then the MERW is the unique maximizer of E(q) among all
adapted positive recurrent Markov chains on G.

2. If A is null R-recurrent, the supremum is not achieved, and any maximizing sequence of
positive recurrent Markov kernels converges pointwise to the MERW kernel.

3. If A is R-transient and the graph is locally finite, then any maximizing sequence of positive
recurrent kernels is tight, and any limit point is a MERW. However, not all MERWs can
necessarily be approximated in this way.

Let us mention another important property of MERWs, which is closely related to entropy
maximization (see [Dud12, Sec.3.1.1] and [DO25, Proposition 2.3] for more details).

For every length ` ≥ 1 and every γ = (i0, · · · , i`) in I, one has

Pi0(X1 = i1, · · · , X` = i`)
(1.6)
=

ai0,i1
λ

ψi1
ψi0

. . .
ai`−1,i`

λ

ψi`
ψi`−1

= aγ
ψi`
λ`ψi0

. (1.7)

where we set aγ = ai0,i1 · · · ai`−1,i` .
This formula implies that the conditional distribution of the `-length trajectory of (Xn)n≥0,

given any two extremities i0, i`, depends only on the product aγ of weights along the trajectory.
In particular, if all nonzero weights are identical (e.g., when A is a 0/1-matrix), then every path
between a given starting point i0 and an ending point i` is equally likely.

1.2 Our results: MERWs on Z

Burda et al. [BDLW09] (see also [Dud12]) conducted a thorough study of the MERW on some
simple graphs. For example, they proposed studying the MERW on some random perturbations
of (Z/nZ)d by adding independent random loops. They notably demonstrated numerically that
the MERW exhibits a strong tendency to localize on sites with loops (as these are naturally
favored by ψ), in contrast to the diffusive behavior of the standard random walk. In light of
Duda’s experiments, we specifically aim to investigate the localization (or delocalization) of the
MERW on a random perturbation of Z with i.i.d. loops.

Let us present our model. Let w = (wk)k∈Z be a bounded sequence of non-negative numbers,
referred to as the loop environment. We do not specify yet whether w is random or deterministic.
Let Z(w) be the symmetric graph with vertex set Z, where each pair of neighboring vertices is
connected by an edge of weight 1, and each vertex i ∈ Z has a self-loop of weight wi.

The corresponding weighted infinite adjacency matrix is thus:
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wk−1

k+1kk-1

wk wk+1

1 1 A = (ai,j)i,j∈Z =

...
k − 1
k

k + 1
...



. . .
1 wk−1 1

1 wk 1
1 wk+1 1

. . .

 . (1.8)

Besides, the corresponding combinatorial spectral radius λ given in (1.4) is well defined and one
can easily check that

λ ∈
[
2, 2 + sup

k∈Z
wk

]
.

We now introduce the main object of this paper, which is the specialization of Definition 1.2 to
the lattice Z(w).

Definition 1.4. Let ψ be a positive λ-eigenvector of the matrix A defined by (1.8), i.e. satisfying

∀k ∈ Z, ψk+1 + wkψk + ψk−1 = λψk. (1.9)

The corresponding MERW on Z with loop environment w, associated with ψ, is the Markov
chain (Xn)n≥0 on Z with transition probabilities given for all i ∈ Z by

pi,i+1 =
1

λ

ψi+1

ψi
, pi,i =

wi

λ
, pi,i−1 =

1

λ

ψi−1

ψi
. (1.10)

We shall denote by Pw
k the distribution of the process (Xn)n≥0 starting from X0 = k.

The distribution Pw
k is referred to as the quenched law of the random walk (in contrast with

the annealed law, which arises when integrating over a random w). Naturally, the distribution
Pw
k depends on the choice of ψ.

Remark 1.5. Before proceeding, we highlight two points regarding the loop environment:

• If wi = 0 (i.e. there are no loops) for every i, then Pw
k corresponds to the standard random

walk on Z. From now on, we exclude this trivial case.

• Throughout this article, we assume that loop environments are bounded. This assumption
is crucial not only for the proofs but also for defining the model itself. Indeed, if the wi’s
were unbounded, then λ = +∞, making it unclear how to properly define MERWs.

An important feature of our model is that Z(w) is R-transient (in the sense of (1.5)). Indeed,
as we will see below in Proposition 2.3, the matrix A has two extremal positive eigenvectors, ψ+

and ψ−. Consequently, there exist infinitely many MERWs, one for each convex combination of
ψ+ and ψ−. The two MERWs associated with these extremal eigenvectors, denoted below as
(X+

n )n≥0 and (X−n )n≥0, play a particular role.

Our main results are the following:

• In Section 2, we establish several results for a fixed deterministic environment:

– In Proposition 2.3, we construct, for every nice non-random environment w, two
linearly independent positive λ-eigenvectors of A (see Definition 2.1 for the defini-
tion of a nice environment). In particular, A is R-transient. This implies that for
every nice environment, the MERW associated with any λ-eigenvector is transient
(Proposition 2.5).
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– Additionally, in Theorem 2.9, we provide an explicit combinatorial description of the
extremal eigenvectors ψ+ and ψ−, valid for every nice environment. We obtain the
expressions

ψ+
i =


β−1 . . . βi, for i < 0,

1, for i = 0,

(β0β1β2 . . . βi−1)−1, for i > 0,

ψ−i =


(α0α−1 . . . αi+1)−1, for i < 0,

1, for i = 0,

α1α2 . . . αi, for i > 0.

where (αi)’s and (βi)’s can be written either as the evaluation of certain generat-
ing series (see Eq. (2.8)) or as explicit continued fractions (see Eq. (2.12)). This
description appears interesting independently of the MERW context.

• In Section 3, we consider random loop environments:

– A consequence of our combinatorial description is that if (wi)i∈Z are bounded i.i.d.
random variables, then both sequences (βi)i and (α−i)i are actually Markov chains.
It turns out that the MERW associated to an extremal λ-eigenvector is a random
walk in an ergodic environment.
This allows us to use existing criteria to prove in Theorem 3.1 that the corresponding
MERW is transient with a constant linear speed, both for quenched and annealed
distributions (see Fig. 1 for simulations).

– MERWs associated with a generic non-extremal λ-eigenvector have a more complex
structure (they are not random walks in an ergodic environment). However, we are
still able to describe their asymptotic behavior using a coupling with the extremal
MERWs. This is the purpose of Theorem 3.4, which can be seen as the most important
result of our article. Let X(κ)

n be the MERW corresponding to the eigenvector κψ+ +

(1− κ)ψ− then, conditionally to X(κ)
n → +∞,

lim
n→+∞

X
(κ)
n

n
= v,

for some explicit v > 0 (see Theorem 3.4 for the full statement). This shows that
all MERWs have a linear speed under the quenched distribution. As a consequence,
MERWs on Z(w) are not localized.

– In Section 3.3 we illustrate a distinctive feature of the model related to its infinite-
dimensional nature by carrying out some explicit calculations when the environment
is given by i.i.d. Bernoulli random variables.
We analyze the limiting speed vp,M := limn

1
nX

+
n where each P(wk = M) = p =

1 − P(wk = 0). Specifically, we show in Proposition 3.6 that limp→0+ vp,M 6= 0: the
limiting speed of the process abruptly jumps from 0 to a strictly positive value when
i.i.d. Bernoulli random loops are added. The reader is invited to observe Figs. 3
and 4, which illustrate the rather complex behavior of vp,M .

• In the Appendix, we provide explicit computations for a deterministic loop environment.
Comparing this with the case of Bernoulli random environments reveals the significant
impact of randomness in loops.
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Figure 1: Left: 200 independent simulations of the MERW (X+
n )n≥0 up to n = 600 in the same

realization of the random i.i.d. loop environment. There is a loop of weight M = 20 at each
vertex with probability p = 0.02. Right: Same parameters except p = 0.05.
These simulations support Proposition 3.6: the asymptotic speed vp,M of the MERW is decreas-
ing in p.

Connection with the Parabolic Anderson Model

MERW are closely related to spectral properties of discrete Schrödinger operators with random
potentials, central to the study of Anderson localization.

The standard Anderson model considers the operator

Hψn = ψn−1 + ωnψn + ψn+1 = ψn−1 − 2ψn + ψn+1︸ ︷︷ ︸
=∆ψn

+ (2 + ωn)︸ ︷︷ ︸
=w̃n

ψn,

where (ωn)n∈Z is an i.i.d. sequence of random variables, typically taking values in R.
It is well known that, under mild conditions on (ωn)n≥0, the spectral measure of H in

`2(Z) is almost surely purely ponctual, with exponentially localized eigenfunctions. We refer
to [Lan91,CKM87,KS80] for more details.

In contrast, MERWs are associated with the combinatorial spectral radius λ of the adjacency
matrix A of a graph rather than the spectrum in `2(Z). MERWs satisfy a discrete Schrödinger-
type equation, where ψ is a positive eigenfunction, not necessarily in `2(Z).

This setting is reminiscent of the study of positive solutions of Schrödinger-type equations
in the Parabolic Anderson Model (PAM), which examines

∂u

∂t
= ∆u+ ω̃ u,

with a random potential ω̃ (see, e.g. [GK05]).
A standard and very powerful tool for the probabilistic analysis of the PAM is the Feynman–

Kac representation of the solution u. It takes the form

u(t, x) = E0

[
exp

(∫ t

0
ωX(s) ds

)
1{X(t)=x}

]
, (1.11)

where (X(s))s≥0 denotes a continuous-time random walk on Zd with generator ∆.
Although the precise connection between MERW and the PAM remains to be clarified, some

of the explicit computations carried out here for the MERW, such as the determination of
the spectral radius and certain localization properties, may provide intuition for understanding
related phenomena in the PAM. Conversely, techniques developed for the PAM, in particular
those concerning intermittency, could also offer potential insights for further studies on MERW.
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2 MERW on Z: deterministic loop environments

The main goal of this section is to state several results for a fixed loop environment. In particular
we provide in Theorem 2.9 an explicit combinatorial description of the extremal eigenvectors ψ+

and ψ−. We begin with simple properties of the matrix A given by Eq. (1.8).

2.1 Preliminaries

We will mostly consider nice environments w, in the following sense.

Definition 2.1. Let M > 0 be fixed. The loop environment w = (wi)i∈Z is said to be M -nice
if w is bounded by M , non identically equal to M , and if for all ε > 0 and every integer r ≥ 0
there exists i ∈ Z such that

wi, . . . ,wi+r are all ≥M − ε. (2.1)

The assumption of an M -nice environment is rather restrictive, but it allows for an explicit
computation of the spectral radius, see Lemma 2.2 below. In addition, it is well suited to the
case of an i.i.d. environment. Moreover, as mentioned in the introduction, we eliminate the case
where wi = M for every i in order to avoid trivialities: in this case the only λ-eigenvectors are
the constant ones and the MERW coincides with the standard random walk.

The following lemma is not surprising but its proof contains several estimates that will be
needed later.

Lemma 2.2. Assume that w is M -nice. Then the combinatorial spectral radius of the matrix
A defined by Eq. (1.8) is given by λ = 2 +M.

Proof of Lemma 2.2. First note that, for every n ≥ 1 and i, j ∈ Z, one has a(n)
i,j ≤ (2 + M)n,

and thus λ ≤ 2 +M . Hence, the non-trivial part is to prove the lower bound λ ≥ 2 +M .
Fix ε > 0, r ≥ 1 and let i be an integer satisfying assumption (2.1). By concatenation of

paths, we have
a

(n)
i,i ≥

(
uiyi
r

)bn/rc
, (2.2)

where uiyi
r is the (weighted) number of paths of length r going from i to i, which stay above i.

These paths necessarily stay confined in the strip i ≤ y ≤ i + r, and every vertex in this strip
has a loop of weight greater than M − ε.

Let us introduce w, the loop environment in which all loops have weightM−ε. For arbitrary
i, r, one has uiyi

r ≥ d0y0
r , where d0y0

r represents the weighted number of paths that remain
above 0 in the graph Z(w). The asymptotics of d0y0

r can be derived using standard techniques
of analytic combinatorics, through a slight generalization of the analysis of Motzkin numbers
(which correspond to the case of weights equal to 1, see [FS09, Example 6.3, p. 396]). We also
refer to [Spi76] for classical probabilistic treatments of random walks on the half-line, where
most of the results we use are stated and proved. Since the computations will be useful later in
the proof of Lemma 2.6, we provide the details below.

For a loop environment w, let H [≥i],w
i,i (z) be the generating function of paths in Z(w) which

start and end at i and stay above i. In particular,

H
[≥i],w
i,i (z) =

∑
r≥0

d0y0
r zr. (2.3)

By decomposing such paths with respect to successive passages at i (for more details see [FS09,
Sec.V.4.1.], and especially the arch-decomposition), one can write

H
[≥i],w
i,i (z) =

1

1− (M − ε)z − z2H
[≥i],w
i,i (z)

.
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By solving this equation, one finds

H
[≥i],w
i,i (z) =

1

2z2

(
1− z(M − ε)−

√
((M − ε)z − 1)2 − 4z2

)
. (2.4)

In particular, H [≥i],w
i,i (z) is ∆-analytic (in the sense of [FS09, Def.VI.1.]) around its dominant

singularity, which is located at z∗ = (2 +M − ε)−1, and

H
[≥i],w
i,i (z) =

z→z∗
(2 +M − ε)− (2 +M − ε)2(z∗ − z)1/2.

Using the transfer theorem [FS09, Cor.VI.1], we obtain that, for all r ≥ 0,

d0y0
r ≥ c(2 +M − ε)rr−3/2, (2.5)

for some c > 0. We deduce from (2.2), (2.5), and uiyi
r ≥ d0y0

r that

λ = lim sup
n→∞

(a
(n)
i,i )1/n ≥ lim inf

n→+∞

((
d0y0
r

)bn/rc)1/n
≥ ε(r)(2 +M − ε),

with ε(r)→ 1 as r →∞. This yields λ ≥ 2+M−ε, for any ε > 0. This completes the proof.

2.2 The two extremal eigenvectors ψ+ and ψ−

We describe in general the set of λ-eigenvectors for all M -nice environments.

Proposition 2.3. Let w be a M -nice loop environment. Then the matrix A defined in Eq. (1.8)
has exactly two normalized positive extremal eigenvectors ψ+ and ψ−.

These are respectively non-decreasing and non-increasing and

lim
n→∞

ψ+
n = lim

n→−∞
ψ−n =∞.

Furthermore, introduce L− := inf{n ∈ Z : wn < M} and L+ := sup{n ∈ Z : wn < M}.
1. If L− = −∞ then ψ+ is increasing and lim

n→−∞
ψ+
n = 0.

2. If L+ =∞ then ψ− is decreasing and lim
n→+∞

ψ−n = 0.

3. If L− ∈ Z then ψ+ is constant on {n ∈ Z : n ≤ L−} and increasing on {n ∈ Z : n ≥ L−}.

4. If L+ ∈ Z then ψ− is constant on {n ∈ Z : n ≥ L+} and decreasing on {n ∈ Z : n ≤ L+}.
As mentioned in the introduction, we will present later a fully explicit description of ψ+, ψ−.

However, we still provide a proof of Proposition 2.3, as the arguments are elementary and more
robust than the combinatorial approach. In particular they could be generalized to other kinds
of one-dimensional graphs.

Proof of Proposition 2.3. To build ψ+ and ψ−, we proceed by truncation and approximation.
Given k ≤ 0 and ε > 0, we define ψ(k,ε) as the unique sequence satisfying

∀n ≥ k, ψ
(k,ε)
n+1 + wnψ

(k,ε)
n + ψ

(k,ε)
n−1 = λψ(k,ε)

n , (2.6)

with the boundaries conditions

ψ(k,ε)
n =


0, for all n ≤ k − 2,
ε, if n = k − 1,
2ε, if n = k.
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Then, if for some n ≥ k, one has 0 < ψ
(k,ε)
n−1 < ψ

(k,ε)
n , we get from (2.6) that

ψ
(k,ε)
n+1 ≥ (λ−M)ψ(k,ε)

n − ψ(k,ε)
n−1 > ψ(k,ε)

n .

Hence, ψ(k,ε) is non-decreasing on Z and increasing for n ≥ k − 2. Besides, it is clear that for
k ≤ 0, the function ε 7→ ψ

(k,ε)
0 is continuous on (0,∞) and

lim
ε→0

ψ
(k,ε)
0 = 0 and lim

ε→+∞
ψ

(k,ε)
0 = +∞.

We deduce that there exists εk > 0 such that ψ(k,εk)
0 = 1. In the sequel, we omit the dependence

on εk and simply write ψ(k) := ψ(k,εk).
We now claim that for each n ∈ Z, the set An = {ψ(k)

n : k ≤ 0} is bounded from below (by
zero) but also from above. This result is clear for n ≤ 0 since ψ(k) is increasing and ψ(k)

0 = 1, and
it follows for all n ≥ 0 by induction using (2.6). Consequently, by applying Cantor’s diagonal
argument, there exists a subsequence (km)m≥0 and a sequence ψ+ such that, for all n ∈ Z,

lim
m→∞

ψ(km)
n = ψ+

n .

It is then straightforward that the limit point ψ+ is non-decreasing, non-negative, and sat-
isfies the linear recurrence equation (2.6) for all n ≥ 0, meaning Aψ+ = λψ+. This eigenvector
must be positive, otherwise it would be zero everywhere.

Furthermore, for all n ∈ Z,

ψ+
n+1 − ψ+

n = (λ− 1− wn)ψ+
n − ψ+

n−1 ≥ ψ+
n − ψ+

n−1, (2.7)

with equality if and only if wn = M . Since there exists n0 such that wn0 < M , we get that
ψ+
n0+1 − ψ+

n0
> 0, and we deduce from the convex estimate (2.7) that limn→∞ ψ

+
n =∞.

Now, introduce ` = limn→−∞ ψ
+
n ≥ 0. We obtain that (λ− 2−wn)` tends to 0 as n→ −∞.

If {n ≤ 0 : wn < M} is infinite, then necessarily ` = 0. Otherwise, there exists L ∈ Z such
that for all n ≤ L, wn = M . It follows that 2ψ+

n = ψ+
n−1 + ψ+

n+1 for all n ≤ L − 1. The only
bounded solution of this equation is the constant solution, which implies the desired result. By
symmetry, one can construct ψ− similarly.

To conclude, observe that the vector space of real solutions of (2.6) has dimension 2, and
since ψ± are clearly linearly independent, we deduce that ψ± are the extremal points of the
convex set of positive solutions of (2.6) normalized by ψ0 = 1.

2.3 MERW on Z: first properties

Definition 2.4 (Mixtures of eigenvectors). Let w be an M -nice loop environment. For all
0 ≤ κ ≤ 1, let ψ(κ) be the positive eigenvector given by

ψ(κ) = κψ+ + (1− κ)ψ−.

We denote by X(κ) the MERW associated to ψ(κ).

The two processes X(1) and X(0), corresponding respectively to ψ+ and ψ−, will be referred
to as the extremal MERWs. They will also be denoted by X+ and X− since ψ(1) = ψ+ and
ψ(0) = ψ−. A direct consequence of Proposition 2.3 is the transience of the MERW for every
nice environment and every positive λ-eigenvector. One can actually be more precise.
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Proposition 2.5. Let w be an M -nice loop environment. Then A is R-transient, and for every
0 ≤ κ ≤ 1 and k ∈ Z the process X(κ) converges Pw

k -a.s. to +∞ or −∞. Furthermore, one has

Pw
k

(
lim
n→∞

X(κ)
n = +∞

)
= 1− Pw

k

(
lim
n→∞

X(κ)
n = −∞

)
=

κψ+
k

κψ+
k + (1− κ)ψ−k

.

Proof of Proposition 2.5. From [VJ67, Sec.2], we know that if there are several linearly indepen-
dent solutions to Aψ = λψ, then A is R-transient in the sense of Eq. (1.5). In this case, it is
not difficult to check that any MERW is transient, since one can write

∑
n

Pk(X(κ)
n = k)

eq.(1.7)
=

∑
n

a
(n)
k,k

λn
ψ

(κ)
k

ψ
(κ)
k

=
∑
n

a
(n)
k,k

λn
eq.(1.5)
< +∞.

Therefore X(κ)
n → ±∞ almost-surely. In order to compute Pk(X

(κ)
n → +∞) we use classical

martingale arguments from potential theory for random walks.
First consider the case 0 < κ < 1. Note that the function h(n) = ψ+

n /ψ
(κ)
n is a positive and

bounded harmonic function for the Markov chain (X
(κ)
n )n≥0. Indeed, for all i ∈ Z, one has

∑
j∈{i,i±1}

ai,j
ψ

(κ)
j

λψ
(κ)
i

ψ+
j

ψ
(κ)
j

=

∑
j∈{i,i±1} ai,j ψ

+
j

λψ
(κ)
i

=
ψ+
i

ψ
(κ)
i

.

Besides limn→−∞ h(n) = 0 and limn→∞ h(n) = 1/κ. In particular, (h(X
(κ)
n ))n≥0 is a bounded

positive martingale and thus it converges almost surely. Applying the dominated convergence
theorem we deduce that:

ψ+
k

κψ+
k + (1− κ)ψ−k

= Ew
k

[
h(X

(κ)
0 )
]

= Ew
k

[
h(X(κ)

∞ )
]

=
1

κ
Pw
k

(
lim
t→∞

X(κ)
n = +∞

)
.

For the case κ = 1, consider, similarly to the previous situation, the function h̃(n) = ψ−n /ψ
+
n ,

so that (h̃(X+
n ))n≥0 is a positive supermartingale, and hence (h̃(X+

n ))n≥0 converges almost surely.
Since limn→−∞ h̃(n) = ∞ and limn→∞ h̃(n) = 0, it follows that (X+

n )n≥0 necessarily converges
to +∞. The case κ = 0 is identical, using h̃(n) = ψ+

n /ψ
−
n .

A toy example: step-function loop environment

In order to illustrate Proposition 2.3 and Proposition 2.5, we give the example of the step-
function environment w given by wi = M for all integers i ≤ 0 and wi = 0 for all i ≥ 1. Since
w is M -nice, Lemma 2.2 applies, and the combinatorial spectral radius satisfies λ = M + 2.

To obtain the expressions of ψ+ and ψ−, one can actually solve (1.9) directly. Let γ be the
unique root of X2−λX + 1 in (0, 1). One can easily check that the corresponding two extremal
eigenvectors are given by

ψ+
k =

{
1, for k ≤ 0,
γ

1+γ γ
−k + 1

1+γ γ
k, for k ≥ 0,

and ψ−k =

{
1− (1− γ)k, for k ≤ 0,

γk, for k ≥ 0.

Following Proposition 2.5, the corresponding extremal MERWs X+ and X− are respectively
transient to +∞ and −∞ but exhibit distinct behaviors.
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First, since ψ+
n grows exponentially fast to +∞, it is not difficult to see that X(1) has a

positive linear speed. More precisely, one can check that the linear speed vM is given by

E[X+
n+1 −X+

n |X+
n = k] ∼

k→+∞
vM =

1

λ

(
1

γ
− γ
)
.

Besides, one can check that vM∼
√
M as M → 0 while vM∼M−1 as M → +∞.

On the contrary, X− is a random walk with asymptotically zero drift on the negative integers.
These kinds of random walks are also referred to as Bessel-like random walks or Lamperti
processes. We refer to [DO24] for a more in-depth discussion.

2.4 Combinatorial description of ψ+ and ψ−

For general infinite matrices, there exists a combinatorial description of λ-eigenvectors in terms
of paths (see [VJ67, Sec.2]). However, this expression may be difficult to compute explicitly in
the general case. Regarding Z(w) with an M -nice environment w, the simple structure of the
weighted adjacency matrix A allows us to provide some combinatorial expressions for the two
extremal λ-eigenvectors.

Let i, j, r be arbitrary integers. Similarly to (2.3), one denotes by H [≥r],w
i,j and H [≤r],w

i,j the
generating functions of lattice paths on Z(w) starting at i, ending at j, and staying respectively
above or below the height r. Then, consider

βi =
1

λ
H

[≤i],w
i,i

(
1

λ

)
and αi =

1

λ
H

[≥i],w
i,i

(
1

λ

)
. (2.8)

The convergences of series H [≥i],w
i,j (z) and H [≤i],w

i,j (z) at their dominant singularity z = 1/λ

is a consequence of the fact that Z(w) is R-transient (in the sense of (1.5), see again, [VJ67]).
Finiteness of αi, βi also follow from elementary bounds that we give in the following lemma.

Lemma 2.6. Let w be a M -nice loop environment. For each i ∈ Z, αi and βi are finite. More
precisely,

γ :=
λ−
√
λ2 − 4

2
≤ αi, βi ≤ 1, (2.9)

and αi = γ (resp. αi = 1) if and only if wk = 0 (resp. wk = M) for all k ≥ i. Similarly, βi = γ
(resp. βi = 1) if and only if wk = 0 (resp. wk = M) for all k ≤ i.

Furthermore, the sequence (βi)i∈Z satifies the two sided recurrence relation:

∀i ∈ Z, βi =
1

λ− wi − βi−1

(
i.e. βi−1 = λ− wi −

1

βi

)
. (2.10)

Similarly, (αi)i∈Z satisfies:

∀i ∈ Z, αi = λ− wi −
1

αi+1

(
i.e. αi+1 =

1

λ− wi − αi

)
. (2.11)

Proof of Lemma 2.6. Letw (resp. w) be the environment where each loop has a constant weight
M (resp. 0). By coefficient-wise domination, we have the following inequalities:

H
[≥i],w
i,i (1/λ) ≤ H [≥i],w

i,i (1/λ) ≤ H [≥i],w
i,i (1/λ).

Similarly to (2.4), one can compute the lower and upper bounds and we obtain

λ2 − λ2
√

1− 4/λ2

2
≤ H [≥i],w

i,i (1/λ) ≤ 1−M/λ−
√

(M/λ− 1)2 − 4/λ2

2/λ2
= λ.
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Regarding the last equality in the latter equation, recall that λ = M + 2. Dividing by λ then
proves (2.9).

We now turn to the proof of (2.10) and (2.11). Similarly to Lemma 2.2, the proof relies on
path decompositions. Indeed, the arch-decomposition [FS09, Sec.V.4.1.] yields that

H
[≥i],w
i,i (z) =

1

1− zwi − z2H
[≥i+1],w
i+1,i+1 (z)

and H
[≤i],w
i,i (z) =

1

1− zwi − z2H
[≤i−1],w
i−1,i−1 (z)

.

Taking z = 1/λ in the above relations yields (2.11) and (2.10).

Remark 2.7. The recurrence relations satisfied by αi and βi (see equations (2.10) and (2.11))
are related to what is known in the physics literature as Riccati variables. Such variables arise
naturally in the study of one-dimensional disordered systems and Anderson localization; see, for
instance, the classical work [Hal67] and more recent developments [CTT10,CTT13]. Insights
from this literature may prove useful for understanding certain aspects of our model.

Remark 2.8. For any i ∈ Z, αi only depends on loops {wk, k ≥ i}, while βi only depends on
loops {wk, k ≤ i}. Besides, by iterating (2.11) and (2.10), one obtains the following continued
fraction expansions:

αi =
1

λ− wi −
1

λ− wi+1 −
1

. . .

and βi =
1

λ− wi −
1

λ− wi−1 −
1

. . .

. (2.12)

Note that αi and βi are obtained by randomly iterating the functions gs, for 0 ≤ s ≤ M ,
defined in (2.13) and represented on [γ, 1] in Figure 2. The values γ and 1 in (2.9) are the
respective fixed points of g0 and gM .

(γ, γ)

(1, 1)
gM

gs

g0

Figure 2: Sketchs of plots of gs.

gs(x) =
1

λ− s− x. (2.13)

We now can state the main result of Section 2.

Theorem 2.9. Let w be an M -nice loop environment, and let (αi)i∈Z and (βi)i∈Z be defined by
(2.8). The two normalized extremal λ-eigenvectors of A, ψ+ and ψ− defined in Proposition 2.3,
have the following representations:
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ψ+
i =


β−1 . . . βi, for i < 0,

1, for i = 0,

(β0β1β2 . . . βi−1)−1, for i > 0,

ψ−i =


(α0α−1 . . . αi+1)−1, for i < 0,

1, for i = 0,

α1α2 . . . αi, for i > 0.

(2.14)

Proof of Theorem 2.9. Let us check that the expression of ψ+ given by (2.14) indeed defines a
λ-eigenvector. For all i ∈ Z, one has

ψ+
i+1 + wiψ

+
i + ψ+

i−1

(2.14)
=

1

βi
ψ+
i + wiψ

+
i + βi−1ψ

+
i

(2.10)
=

(
1

βi
+ wi + λ− wi −

1

βi

)
ψ+
i = λψ+

i .

Similarly, one can check that ψ− is a λ-eigenvector.
It remains to check that ψ+ and ψ−, defined by (2.14), are not collinear. Assume, for

contradiction, that ψ+ and ψ− are collinear. Then, they must be equal since ψ+
0 = ψ−0 = 1, and

this implies by an immediate induction that αi = 1/β−i for every i ∈ Z. By (2.9), this means
that 1 = αi = β−i for every i ∈ Z. Finally, Lemma 2.6 yields that wi = M for every i, which
contradicts the assumption that w is M -nice.

3 MERW on Z: i.i.d. loop environments

Throughout this section, we assume that the loop environment w = (wi)i∈Z is given by a
sequence of i.i.d. random variables with common distribution ν.

We shall denote by µ the distribution of the environment, i.e., the product measure µ = ν⊗Z,
and by Eµ the corresponding expectation.

Hypothesis (Hyp-ν). There exists a constant M > 0 such that ν([0,M ]) = 1, ν 6= δM , and
M ∈ supp ν, that is, for all ε > 0, ν([M − ε,M ]) > 0.

Under Hypothesis Hyp-ν, the random loop environment w is µ-almost surely M -nice. In
particular, Lemma 2.2 implies that the random combinatorial spectral radius λ is µ-almost surely
constant and equal to 2 +M .

We recall that Pw
k denotes the quenched probability distribution over the space ZZ≥0 of

trajectories, starting from k ∈ Z, endowed with the cylinder σ-algebra. This corresponds to
the probability distribution of trajectories when the environment w is fixed. In contrast, we
introduce the annealed probability on the space [0,M ]Z×ZZ≥0 of pairs (environment, trajectory),
defined by

Qk(W ×A) =

∫
W

Pw
k (A)dµ(w) = Eµ[1WPk(A)],

for any W and A in the corresponding cylinder σ-algebra. We shall denote by Ew
k (resp. EQ

k )
the expectation corresponding to Pw

k (resp. to Qk).

3.1 MERW associated with the random extremal eigenvectors

It follows from Lemma 2.6 and Remark 2.8 that (βi)i∈Z and (αi)i∈Z are stationary sequences of
random variables in (γ, 1). Besides, together with (2.10), the sequence (βi)i∈Z is a stationary
and ergodic Markov chain. Observe that (αi)i∈Z is also stationary, but it is not a Markov chain,
contrary to the time-reversed sequence (α−i)i∈Z.
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To analyze the MERW corresponding to the (random) extremal eigenvectors ψ+ and ψ−,
we need a few formal notations. For any ` ∈ Z, introduce the shift θ`, which operates on
environments:

θ` : [0,M ]Z → [0,M ]Z

(wk)k∈Z 7→ (wk+`)k∈Z .

The explicit expression of ψ+ implies (see (1.10) and Theorem 2.9) that the corresponding
random transition probabilities of the quenched MERW X+ take the following form:

p+
i,i+1(w) =

1

λβi
, p+

i,i−1(w) =
βi−1

λ
and p+

i,i(w) =
wi

λ
, (3.1)

for arbitrary i ∈ Z. Obviously, a similar expression can be obtained for the second extremal
quenched MERW X−. When there is no ambiguity, we sometimes shorten p+

i,j(w) to p+
i,j . One

can easily check that
pi,j

(
θ`(w)

)
= pi+`,j+`(w), (3.2)

for all i, j, ` ∈ Z. It follows that the process X+ is a random walk in a µ-ergodic (with respect
to the shift θ) random environment. Many quantitative results are known for such processes,
we allude for instance to [Zei04] and [Ali99].

A particularly relevant quantity (given in the two latter references) is the random variable
(defined on the environment space) given by

S =
1

p+
0,1

+

+∞∑
i=1

1

p+
−i,−i+1

i−1∏
j=0

ρ−j , where ρi =
p+
i,i−1

p+
i,i+1

= βiβi−1. (3.3)

It is known (see, for instance, [Zei04, Sec. 2.1]) that if Eµ[log(ρ0)] < 0, then the corresponding
random walk is Qk-a.s. transient to +∞ for all starting points k. Here, since βi < 1 µ-a.s., we
get from the right-hand side of (3.3) that indeed Eµ[log(ρ0)] < 0. Hence, we recover the fact
that X+ is transient to +∞ for µ-almost all environments (recall Proposition 2.5).

One can actually be much more precise. We have that (see [Zei04, Th.2.1.9]) X+ has a
constant positive linear speed v with Qk-probability one for any k ∈ Z if and only if Eµ[S] <∞.
In that case, one has

v =
1

Eµ[S]
> 0. (3.4)

Theorem 3.1. Assume Hypothesis Hyp-ν. For all k ∈ Z, one has

lim
n→∞

X+
n

n
= v and lim

n→∞

X−n
n

= −v.

The above limits hold Qk-a.s. and thus Pw
k -a.s. for µ-almost all loop environments w.

Proof of Theorem 3.1. Using (3.1), one can rewrite S as follows:

S =
+∞∑
i=1

λβ−i

i−1∏
j=0

β−jβ−j−1 + λβ0 = λβ0 + λ
+∞∑
i=1

β0β
2
−1β

2
−2 . . . β

2
−i.

We use Lemma 2.6 in order to bound the βi’s. Let us write βi = gwi(βi−1), where gs(x) is
introduced in (2.13). Let δ > 0 be such that µ({wi ≤ M − δ}) > 0 (Hypothesis Hyp-ν). Using
the fact that gs(x) is increasing in both x and s (see Fig. 2) and that gM (1) = 1, we obtain

βi ≤ 1{wi≤M−δ} gM−δ(βi−1) + 1{wi>M−δ} gM (1)

≤ 1− 1{wi≤M−δ} (1− gM−δ(1)) =: Zi, (3.5)
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where the Zi’s are i.i.d. and such that Eµ[Zi] < 1 and Eµ[Z2
i ] < 1. Then, we get, for all i ≥ 0,

Eµ
[
β0β

2
−1β

2
−2 . . . β

2
−i
]
≤ Eµ

[
Z0Z

2
−1Z

2
−2 . . . Z

2
−i+1Z

2
−i
]
≤ Eµ

[
Z2

0

]i
.

Hence, we obtain Eµ[S] < +∞. Using [Zei04, Th.2.1.9], this implies that X+ is Pw-a.s. and
Qk-a.s. transient with linear speed v. The result for X− can be deduced by symmetry.

We now provide a more explicit form for the random variable S involved in v. It will be
particularly useful when analyzing the case of Bernoulli environments in Section 3.3.

Recall that a(n)
i,j denotes the weighted number of paths in Z(w) and X(κ) is the MERW

associated with ψ(κ) = κψ+ + (1 − κ)ψ− In the following, we sometimes explicitly write the
dependence on w to make it more transparent, as for the αi and the βi’s.

Proposition 3.2 (Combinatorial expression for S). Under Hypothesis Hyp-ν, one has

S(w) =

∞∑
n=0

Pw
0 (X+

n = 0), (3.6)

and, for every i, k ∈ Z such that i ≥ k,

∑
n≥0

Pw
k (X(κ)

n = i) =
ψ

(κ)
i (w)

ψ
(κ)
k (w)

∑
n≥0

a
(n)
k,i (w)

λn
=
ψ

(κ)
i (w)

ψ
(κ)
k (w)

λψ−i−k(θ
k(w))

λ− wk − β−1(θk(w))− α1(θk(w))
. (3.7)

Remark 3.3. Combining (3.6) and (3.7) (for i = k = 0) in Proposition 3.2 yields

S(w) =

∞∑
n=0

a
(n)
0,0 (w)

λn
=

λ

λ− w0 − β−1(w)− α1(w)
. (3.8)

Proof of Proposition 3.2. We begin with the proof of (3.6). From [Zei04, Lem.2.1.12]) we have
that, for every k ∈ Z, EQ

k [Tk+1] = Eµ[S], where

Tk+1 = inf{n ≥ 0 : X+
n = k + 1}.

Besides, following the same lines as [Ali99, p. 338], one can write

EQ
0 [T1] =

∫ ∑
i≤0

Eθ
−i(w)

0 [Ni] µ(dw), where Ni = card({0 ≤ n < T1 : X+
n = i}).

To go further, set for all k ≥ 0,

Nk+1
0 = card({0 ≤ n < Tk+1 : X+

n = 0}) and N∞0 = card({n ≥ 0 : X+
n = 0}).

By using the strong Markov property, we obtain that∑
i≤0

Eθ
−i(w)

0 [Ni] =
∑
i≤0

Ew
i [N i+1

0 ] = Ew
0 [N∞0 ].

Therefore, (3.6) is then a simple consequence of the latter equality.
It remains to prove (3.7). By using (1.7), let us write

∑
n≥0

Pw(X(κ)
n = i) =

∑
n≥0

a
(n)
k,i

ψ
(κ)
i

λnψ
(κ)
k

=
ψ

(κ)
i

ψ
(κ)
k

Hw
k,i

(
1

λ

)
, (3.9)
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where Hw
k,i is the generating series of paths going from k to i in the lattice Z(w). Such a path

can be uniquely decomposed as a sequence of excursions above or below k and, if i > k, a final
positive path going from k to i (never returning to k).

Again, following [FS09, Sec.V.4.1.], we obtain that

Hw
k,i(z) =



zH
[≥k+1],w
k+1,i (z)

1− zwk − z2H
[≤k−1],w
k−1,k−1 (z)− z2H

[≥k+1],w
k+1,k+1 (z)

, if i > k,

1

1− zwk − z2H
[≤k−1],w
k−1,k−1 (z)− z2H

[≥k+1],w
k+1,k+1 (z)

, if i = k.

(3.10)

Besides, from the last-passage decomposition [FS09, Eq.(51), p.320] one has

H
[≥k],w
k,i (z) = H

[≥k+1],w
k+1,k+1 (z) zH

[≥k+2],w
k+2,k+2 (z) z . . .H

[≥i−1],w
i−1,i−1 (z) zH

[≥i],w
i,i (z) .

Plugging z = 1/λ into the last equality yields

1

λ
H

[≥1],w
k,i

(
1

λ

)
= αk+1(w) . . . αi(w) =

ψ−i (w)

ψ−k (w)
.

Combining (3.9) and (3.10) finally gives

∑
n≥0

Pw
k (X(κ)

n = i) =
ψ

(κ)
i (w)

ψ
(κ)
k (w)

λψ−i (w)/ψ−k (w)

λ− wk − βk−1(w)− αk+1(w)

=
ψ

(κ)
i (w)

ψ
(κ)
k (w)

λψ−i−k(θ
k(w))

λ− wk − β−1(θk(w))− α1(θk(w))
.

In the last equality, we use

βj(θ
k(w)) = βj+k(w), αj(θ

k(w)) = αj+k(w) and
ψ±i (w)

ψ±k (w)
= ψ±i−k(θ

k(w)), (3.11)

which hold for every j, k ∈ Z. These equalities are simple consequences of (2.12) and can be
easily understood as a consequence of the translation invariance of the model.

This completes the proof.

3.2 Analysis of MERW associated with a non-extremal eigenvector

In the general case, the MERW associated with a generic random eigenvector ψ (which, according
to Proposition 2.3, must be a convex combination of ψ+ and ψ−) is not a random walk in a
usual ergodic environment. Indeed, let ψ(κ)(w) = κψ+(w) + (1− κ)ψ−(w) as in Definition 2.4.
One can check, by using (3.11), that

ψ
(κ)
j (w)

ψ
(κ)
k+i(w)

6=
ψ

(κ)
j (θk(w))

ψ
(κ)
i (θk(w))

, (3.12)

when 0 < κ < 1. In particular, the corresponding Markov kernel is not stationary with respect
to the shift, as in (3.2).

However, one can still describe the behavior of the corresponding MERW by comparison
with the extremal cases. This is the purpose of the following result.

17



Theorem 3.4. Let 0 < κ < 1 and X(κ) be the MERW introduced in Definition 2.4 in an i.i.d.
random loop environment satisfying Hyp-ν. For µ-almost all environments w and all k ∈ Z,

Pw
k

(
lim
n→∞

X(κ)
n = +∞

)
+ Pw

k

(
lim
n→∞

X(κ)
n = −∞

)
= 1.

More precisely, on the event that limn→∞X
(κ)
n = +∞ (resp. limn→∞X

(κ)
n = −∞), one has

lim
n→+∞

X
(κ)
n

n
= v,

(
resp. lim

n→+∞

X
(κ)
n

n
= −v

)
.

Proof of Theorem 3.4. First, note that X(κ)
n → ±∞ is a consequence of Proposition 2.5, since

w is µ-almost surely M -nice. We now prove that X(κ) has linear speed when X(κ)
n → +∞. The

proof when X(κ)
n → −∞ can be deduced by symmetry.

Denote by p(κ)
i,j the transition probabilities corresponding to the MERW X(κ), that is

p
(κ)
i,i+1 =

1

λ

κψ+
i+1 + (1− κ)ψ−i+1

κψ+
i + (1− κ)ψ−i

, p
(κ)
i,i =

wi

λ
, p

(κ)
i,i−1 =

1

λ

κψ+
i−1 + (1− κ)ψ−i−1

κψ+
i + (1− κ)ψ−i

. (3.13)

The idea is to exploit the fact that, for large i, since ψ+
i is much greater than ψ−i , p

(κ)
i,j is very close

to p+
i,j . A quick computation3 indeed shows that, for every i ≥ 0 and every j ∈ {i− 1, i, i+ 1},

∣∣∣p(κ)
i,j − p+

i,j

∣∣∣ ≤ 2(1− κ)

κ

ψ−i−1

ψ+
i

. (3.14)

Let (Un)n≥0 be a sequence of i.i.d. uniform random variables in (0, 1), independent of w. It
is not difficult to see that X(κ) can be constructed inductively as follows. We set X(κ)

0 = k and,
for all n ≥ 0 and i ∈ Z such that X(κ)

n = i,

X
(κ)
n+1 =


i+ 1, if Un < p

(κ)
i,i+1,

i, if Un < p
(κ)
i,i+1 + p

(κ)
i,i ,

i− 1, otherwise.

Note that X+ can also be obtained by replacing the transition probabilities p(κ)
i,j with p+

i,j .
We say that n is a bad time for X(κ) if

Un ∈ (pκi,i+1, p
+
i,i+1) ∪ (p+

i,i−1, p
κ
i,i−1), with i = X(κ)

n .

If n is not a bad time, then X(κ) evolves between time n and n + 1 exactly as X+ would. We
denote by B the random set of bad times. For every K ∈ Z, introduce the event

EK =

{
inf
n≥0

X(κ)
n ≥ K

}
.

Note that
⋃
K≤k EK = {X(κ)

n → +∞}.
3We use the inequality |(a+ ε)/(b+ δ)− a/b| ≤ 2max{a, b}max{ε, δ}/b2, which holds for every a, b, ε, δ > 0.
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In the sequel, to lighten notation, we shall omit κ and write Xn instead of X(κ)
n . Thereafter,

for any K ≤ k, one can write

Ew
k [card(B)1EK ] =

∑
i<k

∑
n≥0

Ew
k [1{Xn=i}1{n∈B}1EK ] +

∑
i≥k

∑
n≥0

Ew
k [1{Xn=i}1{n∈B}1EK ]

≤ Ew
k

[∑
n≥0

1{K≤Xn<k}

]
+
∑
i≥k

∑
n≥0

Ew
k [1{n∈B}1{Xn=i}]. (3.15)

The first term on the right-hand side of (3.15) is the expected number of visits to the finite
set {K, . . . , k − 1} and is therefore finite, since for each fixed environment, Xn is a transient
Markov chain.

Furthermore, since for all n ≥ 0, one has Un independent of Xn, and ψ
(κ)
i (w) ≤ κψ+

i (w), we
get from (3.14), Proposition 3.2, and the Cauchy-Schwarz inequality that∑

i≥k

∑
n≥0

Ew
k [1{n∈B}1{Xn=i}] ≤

∑
i≥k

2(1− κ)

κ

ψ−i−1(w)

ψ+
i (w)

∑
n≥0

Pw
k (Xn = i)

≤ Ck(w)

∑
i≥k

ψ−i−1(w)ψ−i−k(θ
kw)


≤ Ck(w)

√∑
i≥k

(ψ−i−1(w))2

√∑
i≥k

(ψ−i−k(θ
k(w)))2, (3.16)

for some positive constant Ck(w) depending on κ, k, and w. Besides, the very same domination
arguments as in (3.5) allow us to check that

Eµ

∑
i≥k

(
ψ−i−1

)2 <∞ and Eµ

∑
i≥k

(
ψ−i−k(θ

k(·))
)2

 = Eµ

∑
i≥0

(
ψ−i
)2 <∞.

We deduce that the right-hand side of (3.16) is finite for µ-almost all environments w.
This proves that Ew

k [card(B)1EK ] < ∞ for µ-almost all environments w, and we obtain that
card(B) <∞ Pw

k -a.s. on the event {Xn → +∞}.
Introduce τ = supB and consider, for any m ∈ Z, the event Λm = {τ < m} ∩ {Xn → +∞}.

Then, by setting X+
0 = X

(κ)
m and, for all n ≥ 0 and i ∈ Z such that X+

n = i,

X+
n+1 =


i+ 1, if Un+m < p

(κ)
i,i+1,

i, if Un+m < pκi,i+1 + p
(κ)
i,i ,

i− 1, otherwise,

one has a coupling between (Xn)n≥0 and (X+
n )n≥0 such that Xn+m = X+

n for all n ≥ 0 on Λm.
As a consequence, X has a linear speed v+ on Λm for every m ≥ 0. Since τ <∞, we deduce

the same result on the event {Xn → +∞}. The proof for {Xn → −∞} can be deduced by
symmetry.

3.3 The case of a Bernoulli i.i.d. loop environment

In this section, we carry out some explicit calculations when w = (wi)i∈Z is a sequence of
i.i.d. random variables distributed as a Bernoulli random variable times a constant, i.e., whose
distribution is given by

νp,M = p δM + (1− p) δ0,
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for some p ∈ (0, 1) and M > 0.
Note that Hypothesis Hyp-ν is satisfied. Theorem 3.1 applies, and the corresponding ex-

tremal MERW X+ has a positive linear speed denoted here by vp,M . Our aim is to study the
behavior of the speed limit vp,M in the extreme cases p→ 0 and p→ 1.

We need a few notations. Denote by Z the usual unweighted directed graph on Z, where a loop
is added at each vertex (i.e., the adjacency matrix is a 0/1 matrix). Then, given n ≥ ` ≥ k ≥ 0,
let cn(k, `) be the number of excursions of length n from 0 to 0 into Z that include exactly `
loop steps and visit exactly k distinct loops among them.

Obviously, one has cn(0, `) = 0 for all n ≥ ` ≥ 1 and, by convention, c0(0, 0) = 1. To our
knowledge, no explicit closed form for cn(k, `) is known for arbitrary n ≥ ` ≥ k ≥ 0, and we
have not been able to find one either.

When ` = k = 0, cn(0, 0) is nothing but the number of excursions of length n from 0 to 0 in
the usual lattice Z (with no loops). Hence, for all n ≥ 0,

c2n(0, 0) =

(
2n

n

)
and c2n+1(0, 0) = 0. (3.17)

Lemma 3.5. The inverse of limiting speed vp,M satisfies

1

vp,M
=

∑
n≥`≥k≥0

cn(k, `)
pkM `

(2 +M)n
. (3.18)

Proof of Lemma 3.5. First, recall that λ = 2+M and that the inverse of the speed vp,m is equal
to Eµ[S] (see (3.4)). In order to prove (3.18), we use the first equality in (3.8). It follows that

v−1
p,M =

∑
n≥0

Eµ[a
(n)
0,0 ]λ−n =

∑
n≥0

∑
γ∈E0n

Eµ[aγ ]λ−n, (3.19)

where E0
n is the set of excursions of length n from 0 to 0 in Z and aγ is defined as in (1.7), that

is as ai0,i1 . . . ain−1,in if γ = i0 → · · · → in. By decomposing such excursions according to the
number of loops ` and the number of distinct loops k, one obtains (3.18).

Indeed, note that ai,j = 1 when i 6= j and ai,i = wi. So we only need to focus on the loops
appearing in the excursion γ to compute Eµ[aγ ]. Besides, since the wi’s are independent, Eµ[aγ ]
can be written as a product where, if a loop i→ i appears m times in γ, its contribution to the
product is simply Eµ[ami,i] = pMm. This completes the proof.

Proposition 3.6. The map p 7−→ vp,M is decreasing and smooth on (0, 1) and

lim
p→0

vp,M =

√
1− 4

(2 +M)2
and vp,M ∼

p→1

3(1− p)
2 +M

. (3.20)

Remark 3.7. If p = 0, the only MERW (Xn)n≥0 is the simple symmetric random walk on Z.
The latter is recurrent and satisfies limn→+∞Xn/n = 0 by the strong law of large numbers. This
shows, in particular, that the limiting speed is discontinuous as p→ 0.

Remark 3.8. The first derivative of vp,M at p = 0 can be obtained in a somewhat tedious
manner using standard algebraic combinatorial methods.

Proof of Proposition 3.6. To begin with, the fact that p 7→ vp,M is a smooth and increasing
function comes directly from (3.18). Besides,

lim
p→0

v−1
p,M =

∑
n≥0

cn(0, 0)

(2 +M)n
(3.17)

=
∑
p≥0

(
2p

p

)
1

(2 +M)2p
=

(
1− 4

(2 +M)2

)−1/2

.
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We now turn to the most technical part, which is the expansion of vp,M when p→ 1. Recall
from Proposition 3.2 (especially from Remark 3.3) that

v−1
p,M = Eµ

[
λ

λ− w0 − β−1(w)− α1(w)

]
. (3.21)

Then, introduce the i.i.d. geometric random variables of parameter 1− p given by

T+ = inf{i ≥ 1 : wi = 0} and T− = inf{i ≥ 1 : w−i = 0}.

We get from (2.10) and (2.11) that

β−1(w) = gT
−−1

M (β−T−(w)) and α1(w) = gT
+−1

M (αT+(w)).

Recall that the functions gs, for 0 ≤ s ≤ M , are defined in (2.13) and represented in Figure 2.
In particular, we recall that g0(x) = (λ− x)−1 and gM (x) = (2− x)−1.

To go further, observe the following equalities in distribution:

(wT++i)i≥1

(d)
= (w−T−−i)i≥1

(
(d)
= (νp,M )⊗Z≥0

)
.

Clearly, the two latter sequences are independent of each other. Then, we deduce from (2.12)
that αT+ and β−T− are i.i.d. random variables, independent of T+, T− and (wi)−T−≤i≤T+ , and
we obtain that αT+ and β−T− are distributed as g0(α1) = (λ− α1)−1.

Let Y1 and Y2 be two independent random variables distributed as (λ−α1)−1 and independent
from w0. Then, for any n,m ≥ 0,

Eµ
[

λ

λ− w0 − β−1 − α1

∣∣∣∣T+ = n, T− = m

]
= E

[
λ

λ− w0 − gn−1
M (Y1)− gm−1

M (Y2)

]

= (1− p)E
[

λ

λ− gn−1
M (Y1)− gm−1

M (Y2)

]
+ pE

[
λ

2− gn−1
M (Y1)− gm−1

M (Y2)

]
. (3.22)

By using (2.9), one gets that the expectation in front of 1−p in (3.22) is bounded by λ/(λ−2).
Now, we focus on the second term (in front of p). To this end, we need the following result.

Lemma 3.9. Let (un)n≥0 be defined recursively by u0 < 1 and un+1 = gM (un) for all n ≥ 0.
Then, for every n ≥ 0,

un = 1− 1
1

1−u0 + n
.

Proof of Lemma 3.9. It suffices to see that 1/(1− un) is an arithmetic sequence.

Thereafter, since γ < α1 < 1, one can easily check that γ < Y1, Y2 < (λ− 1)−1 < 1 (we refer
to Figure 2). Hence, the random variables (1 − Y1)−1 and (1 − Y2)−1 are bounded from above
and below, and we obtain from Lemma 3.9 that, for some positive constants d, d′ (depending on
M), we have for all n,m ≥ 1,

λ
1

d+n + 1
d+m

≤ E

[
λ

2− gn−1
M (Y1)− gm−1

M (Y2)

]
≤ λ

1
d′+n + 1

d′+m

. (3.23)

To conclude, write T+ = bT1c+ 1 and T− = bT2c+ 1, where T1 and T2 are independent and
exponentially distributed random variables with mean −1/ ln(p).
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By noting that T1 ≤ T+ ≤ T1 +1 and T2 ≤ T− ≤ T2 +1, one can easily see that, for arbitrary
δ > 0, there exist positive constants a, b, c, a′, b′, c′ such that

(a+ T1)(b+ T2)

c+ T1 + T2
≤ 1

1
δ+T+ + 1

δ+T−
≤ (a′ + T1)(b′ + T2)

c′ + T1 + T2
. (3.24)

Lemma 3.10. Let T1 and T2 be two independent exponentially distributed random variables with
mean 1/r. For arbitrary positive real numbers x, y, z, one has

E
[

(x+ T1)(y + T2)

z + T1 + T2

]
∼
r→0

1

3r
.

Proof of Lemma 3.10. Straightforward estimates show that

E
[

(x+ T1)(y + T2)

z + T1 + T2

]
∼
r→0

E
[
T1T2

T1 + T2

]
=

1

3r
.

Finally, plugging Lemma 3.10, (3.24), and (3.23) into (3.22) yields

Eµ
[

λ

λ− w0 − β−1 − α1

]
∼
p→1

λ

−3 ln(p)
∼
p→1

λ

3(1− p) .

This completes the proof.

We refer to Figure 3, which illustrates the variation of the speed with respect to p for different
values ofM . The latter is obtained using Monte Carlo simulations, leveraging the formula (3.21).
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M = 10
M = 1
M = 0.1

Figure 3: Sketch of plots of p 7−→ vp,M obtained by Monte Carlo simulations.

4 Discussion and remaining questions

We have seen that MERWs on Z with loops are very rich, and their behaviors are highly sensitive
to modifications in the loop environment. Moreover, the methods and results are also very
different from those obtained by [BDLW09] in the finite case Z/nZ.

We hope that our combinatorial approach may lead to new results in the future. The
following questions remain to be investigated:
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• A natural generalization is to assign non-constant weights to edges of the form (i, i + 1).
We have not carried out all the calculations in this direction, but we believe that our
approach generalizes well, at least if the weights are bounded away from 0 and 1.

• We hope that the combinatorial approach could lead to interesting results for other one-
dimensional graphs: Z× {0, 1}, Z with edges between vertices at distances ≥ 2, etc.

Also, the use of generating series could potentially yield relevant results for certain families
of infinite trees (random or not) and should be compared to the analytic approaches [OB12].
On the other hand, analyzing MERWs on Zd (d ≥ 2) appears to be significantly more
difficult. This will clearly require different tools.

• We leave open the fine properties of the processes (αi)i∈Z and (βi)i∈Z, even in the case of
a random environment with a very simple common distribution ν. In particular, it would
be interesting to investigate the support of the stationary distribution of those stochastic
processes, which seems singular with respect to the Lebesgue measure.

• In view of Figure 3, it seems that p 7→ vp,M is convex forM ≥Mc and concave forM ≤Mc

for some critical value Mc close to one. This point deserves to be studied and proven if
possible.

• Finally, as in the toy example at the end of Section 2.3, it could be interesting to study
the asymptotic behavior of the drift in Proposition 3.6 with respect to the intensity M of
the loops. Some of our techniques can be used to show that vp,M converges to 0 as M → 0
and M → +∞, but it could be worthwhile to derive precise asymptotics.

In addition, M 7−→ vp,M is not monotone, and the maximum of this function (as well as
the point where it is reached) warrants further investigation. We refer to Figure 4.
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Figure 4: Sketch of plots of M 7−→ vp,M obtained by Monte Carlo simulations.
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A Non-random periodic loop environments

In the case of Bernoulli i.i.d. loops distributed as νp,M , Theorem 3.1 combined with (3.20)
establishes that even for a very small proportion p of loops (each of weight M), the extremal
MERW (X+

n )n≥0 has an asymptotically linear speed that is uniformly bounded away from zero.
To illustrate the specificity of the MERW model in a random environment, we detail in this

appendix some computations for a seemingly comparable model: a periodic deterministic loop
environment of period `.

Consider an `-periodic loop environment, with ` ≥ 2, given by wn` = M for all n ∈ Z and
wi = 0 for i ∈ Z \ `Z. If we take p = 1/`, this periodic environment has approximately the
same number of loops on any large enough interval as the random loop environment ν⊗Zp,M . It
is easy to see that the MERW in a periodic environment is recurrent (with zero velocity); this
can be proved by looking at the process at the times when it hits a point of `Z. This appendix
describes the process in more detail.

Thanks to graph symmetry, the combinatorial spectral radius can be computed using the
tools developed in [DO24], as well as λ-eigenvectors. Roughly speaking, it suffices to study a
reduced graph, which is given here by Z/`Z with its classical nearest-neighbor structure and, in
addition, one loop of weight M at 0, all the remaining edges being of weight 1 (see Fig. 5).

M0

1

· · ·

`− 1

Figure 5: The reduced graph

Let λ`,M = 2 cosh(θ`,M ) denotes the spectral radius and let ψ`,M be the corresponding
eigenfunction on Z/`Z, extended by periodicity on Z. Writing the boundary equation at 0, and
using ψ`,M (1) = ψ`,M (−1) by symmetry, it follows that θ`,M is the positive solution of

2 tanh

(
`θ`,M

2

)
sinh(θ`,M ) = M,

and, for all 0 ≤ n ≤ `− 1 ,

ψ`,M (n) = cosh

((
n− `

2

)
θ`,M

)
.

We denote by π`,M the reversible measure of the associated MERW. Recall that π`,M is propor-
tional to ψ2

`,M since the reduced graph is symmetric.
Observe that θ`,M (hence λ`,M ) decreases with respect to ` and increases with respect to M .

Letting `→∞ while keeping M fixed, one can check that

θ∗M := lim
`→∞

θ`,M = ln

(
M +

√
M2 + 4

2

)
and λ∗M := lim

`→∞
λ`,M =

√
M2 + 4.

Surprisingly, λ∗M is not equal to 2, which would correspond to the combinatorial spectral radius
when w ≡ 0. As a matter of fact, it corresponds to the case where there is one loop of weight
M at some point, say wi = M , and wj = 0 for all j 6= i.
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Proposition A.1. For any M, ε > 0, one has

lim inf
`→+∞

π`,M

({
n ∈ Z/`Z : |n| ≤ 1

2θ∗M
ln

(
1

λ∗Mε

)})
≥ 1− ε. (A.1)

Proof of Proposition A.1. By using the formulas cosh2(x) = 1
2 (cosh(2x) + 1) and

d∑
n=0

cosh(an+ b) =
sinh

(
(d+ 1)a2

)
sinh

(
a
2

) cosh
(
b+ d

a

2

)
,

we get that
d∑

n=0

ψ2
`,M (n) = 1 +

d

2
+

1

2

sinh ((d+ 1)θ`,M )

sinh (θ`,M )
cosh ((d− `)θ`,M ) .

In particular, the normalizing constant Z`,M is equal to

Z`,M =
`+ 1

2
+

1

2

sinh (` θ`,M )

sinh (θ`,M )
cosh (θ`,M ) .

Besides, as `→ +∞, one can check that

θ`,M = θ∗M +
2M√
M2 + 4

e−`θ
∗
M + o

(
e−`θ

∗
M

)
.

We deduce that

Z`,M
`→+∞∼ cosh(θ∗M )

4 sinh(θ∗M )
e`θ
∗
M and

d∑
n=−d

ψ2
`,M (n)

`→+∞∼
(

sinh((d+ 1)θ∗M )e−dθ
∗
M

2 sinh(θ∗M )
− 1

4

)
e`θ
∗
M .

Since 2 sinh((d+ 1)x)e−dx − sinh(x) = cosh(x) + 1
2e
−2dx one can write∑d

n=−d ψ
2
`,M (n)

Z`,M

`→+∞∼ 1− e−2dθ∗M

2 cosh(θ∗M )
.

Assuming d is the lowest integer greater than 1
2θ∗M

ln
(

1
λ∗Mε

)
, we obtain the result.

Remark A.2. Regarding the corresponding MERW (Xn)n≥0 on Z with the `-periodic loop en-
vironment w, one can easily show that it is null recurrent. Hence, this is the unique MERW.
Besides, denoting by P`,Mk its distribution starting from k ∈ Z, and d(x,A) the distance between
x ∈ Z and A ⊂ Z, the concentration inequality (A.1) can be written as

lim inf
`→+∞

lim
n→∞

P`,Mk

(
d(Xn, `Z) ≤ 1

2θ∗M
ln

(
1

λ∗Mε

))
≥ 1− ε.

In conclusion, by comparing (3.20) and Proposition A.1, we can see that the randomness
of loops has a very significant effect. Indeed, even for a tiny p, MERW in a random environ-
ment escapes at linear speed, whereas MERW in a deterministic periodic environment remains
recurrent and highly localized around the loops.
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