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Abstract. We introduce and develop the concept of Maximal Entropy Random Walks (MERWs)
on Weighted Bratteli Diagrams (WBDs), maximizing entropy production along paths as a natu-
ral criterion for choosing random walks on networks. Initially defined for irreducible finite graphs,
MERWSs were recently extended to the infinite setting in [1|. Bratteli Diagrams model various
growth processes, such as the Young Lattice, where the Plancherel growth process emerges as
a MERW. We show that MERWSs are special cases of central Markov chains, which, in general,
provide a powerful framework for deriving combinatorial identities. Regarding growing trees, in
particular, we retrieve and extend Han’s hook-length formula for binary trees and demonstrate
that the Binary Search Tree (BST) process is a MERW, recovering its asymptotic behavior. We
also introduce preferential attachment to generalize BSTs. For comb models, significant central
measures appear, including the Chinese restaurant process, providing an alternative proof of
the Poisson-Dirichlet limit distribution. Finally, we propose a Monte Carlo method, based on
Knuth’s algorithm, to approximate MERWs. We apply it to a pyramidal growth model, drawing
connections with the limit shape of Young diagrams under the Plancherel measure.
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1 Introduction

A commonly employed method to randomly explore a locally finite graph G, without relying on
additional information, is to assume that a walker at any given node transitions uniformly at
random to one of its neighboring nodes at each time step, independently of the past.

This Markov process is referred to as a Generic Random Walk (GRW). Among all possible
random walks, this choice maximizes entropy production at each step. More generally, for a
Markov chain (X,,),>0 on G, it is natural to examine the asymptotic behavior of the entropy
production of the first n-marginals

H((Xo,+, X)) == Y, plxo, -, xn-1) In(p(z0, -+, 01))- (1.1)

0, ,Tn—1€G

Here, p(xg,---,x,—1) denotes the probability distribution of (Xo,---,X,—1), which can be
expressed as po(zo)p(xo, 1) P(Tp—2,Tn—1), where ug(zg) is the probability distribution of
Xo, and p(z,y) is the Markov kernel of the random walk.

For an irreducible and positive recurrent Markov chain, this entropy production grows lin-
early, with a rate determined solely by p (through its invariant probability 7), given by

h(p) — lim H((XOw'anfl))

n—00 n

==Y 7(@)p(x,y) In(p(z,y)). (1.2)

z,yeG

This quantity quantifies the entropy production per step under the stationary distribution.



Maximum Entropy Random Walks (MERWS) represent a paradigm shift from a local to a
global perspective. These walks are designed to maximize entropy along their paths or, equiva-
lently, the entropy rate (1.2). This approach was recently introduced in [2—4] for finite irreducible
graphs. Notably, the authors highlight the strong localization phenomenon exhibited by MERWSs
in slightly disordered environments. This characteristic has profound relevance in Quantum
Mechanics, particularly in the context of the Anderson localization phenomenon (see [5] for a
mathematical overview). The concept of MERWS is also intimately connected to Parry measures
for subshifts of finite type, originally defined in [6]. In addition, the case of infinite irreducible
graphs has been investigated in [1], revealing several phenomena that do not appear in the fi-
nite setting. As a matter of fact, since the right-hand side of (1.2) does not make sense when
the Markov kernel is not positive recurrent, the appropriate definition of such walks remains
somewhat unclear. Let us recall some definitions and properties of these walks.

1.1 Irreducible framework

i) The classical finite setting. When G is an irreducible finite graph, the Perron-Frobenius
theorem ensures the existence and uniqueness (up to a positive constant) of a positive right
(resp. left) eigenvector v (resp. ¢) of the 0/1-adjacency matrix A of the graph, associated with
the spectral radius p. It can be easily shown that there is a unique random walk (X,,)p>0 on G
that maximizes the rate of entropy (1.2).

This walk, called the Maximum Entropy Random Walk (MERW) on G, has a Markov kernel
and an invariant probability measure given by

Y(y)
p(x)

The eigenvectors ¥ and ¢ are normalized so that 7 is a probability measure.

Besides, one can easily show that the corresponding entropy rate is Ayprw = In(p). In-
terestingly, one can note that all trajectories of length n between vertices = and y are equally
probable, as shown by

p(z,y) = Az, y) and - w(x) = @(x)i(x). (1.3)

Y(y)
prip(x)”

We shall prove (see Proposition 2.3) that this property characterizes MERWs on R-positive
graphs (see below for a definition).

To extend the scope, the adjacency matrix A can be replaced with a weighted variant (strictly
positive on edges), and the MERW can be chosen to maximize

) == 3wl (520, (1.5)

a:,yeG’ A(:U7 y)

IP)(XO:'T?"' 7Xn:y|X0:ann:y):

(1.4)

over positive-recurrent Markov kernels p on G. When the entries A(x,y) are non-negative
integers, this formulation can be interpreted as a MERW on a multi-edge graph. Additional
constraints, such as energy conditions, can be introduced as discussed in [7].

Although there are only a limited number of solvable models where the spectral radius and
the associated wave function are explicitly known, determining these in general remains a chal-
lenging task. For specific examples, such as (truncated) Cayley trees and ladder graphs, refer
to [8]. For smaller graphs, it is feasible to compute these values numerically and conduct com-
puter simulations of the MERW.



it) The infinite setting. The proper definition of a MERW on an infinite irreducible weighted
graph G has been addressed in [1|. This is primarily achieved using the theory of non-negative
infinite matrices, as presented in [9,10].

In this context, existence and uniqueness are no longer guaranteed. There are mainly two
cases: the R-recurrent (resp. the R-transient) situation, characterized by

Z &i’y) =00 (resp. < 00), (1.6)
n>0 P

for some (or equivalently all) x,y in G. Here, p denotes the inverse of the radius of convergence
R of the corresponding power series (which turns out not to depend on z,y). It is referred to
as the combinatorial spectral radius in [1], as it depends on the asymptotic weighted number of
paths of length n in the graph.

Roughly speaking, a MERW on G is still defined by the Markov kernel on the left-hand side
of (1.3), where v is a positive eigenfunction associated with the weighted and infinite adjacency
matrix A. In addition, it is elucidated in [1] how these random walks optimize the entropy rate.

The case where the graph is R-positive, meaning it is R-recurrent and A™(x,y)p~" does not
converge to zero, is very similar to the finite setting. In this scenario, there exists a unique
MERW maximizing (1.5) over positive-recurrent kernels, and the maximum is equal to In(p).

When the graph is R-recurrent but A™(z,y)p~" tends to zero, existence and uniqueness are
still maintained, but In(p) is no longer a maximum of (1.5), only a supremum.

Besides, in the R-recurrent situation, the unique MERW is well approximated by consid-
ering any nested exhaustive sequence of irreducible finite subgraphs J,,~q T Gn = G and the
corresponding sequence of classical MERWs. -

The R-transient situation is much more complex. There exists a necessary and sufficient
criterion for existence (see Theorem 2.1 in [1]), which is quite difficult to handle when the
weighted graph is not locally finite, and uniqueness is no longer guaranteed.

As a matter of fact, given a base point o in G, and A > p, the set

C={Y:G — (0,00) : A = \p with (o) = 1}, (1.7)

is a convex set whose extremal points can be described by the Martin boundary theory. Here
again, In(p) is the supremum of (1.5) over positive-recurrent kernels.

This explains why the case where p in (1.3) is replaced by A > p is not considered, even
though the corresponding random walks maximize the pathwise entropy conditionally on their
length and endpoints, as (1.4) highlights in the unweighted case.

However, finite approximations of transient MERWSs appear to be more enigmatic. An exam-
ple in Section 2.3 of [1] is provided, where all finite approximations lead to a quantized subset of
all the transient MERWs as they were previously defined, raising questions about the appropriate
definition of MERWs in the irreducible infinite framework.

1.2 Beyond the irreducible framework : Bratteli Diagrams.

Among the wide variety of such networks, one notable example is Directed Acyclic Graphs
(DAGs), with rooted trees being a particularly simple case. Trees have the advantage of pos-
sessing rigid hierarchical levels. Between these two models, we have chosen to investigate the
case of Bratteli Diagrams (BDs). We refer to Definition 2.1 or Figure 1 for an example.



Figure 1: An example of Brattelli Diagram with some transition probabilities

These diagrams are associated with rich algebraic, combinatorial, and probabilistic struc-
tures. A gentle introduction can be found in [11], and the Young or Pascal lattice can be
mentioned as famous examples of BDs. Moreover, upon closer inspection, these graphs encode
a large class of growth models.

i) About the definition. To begin with, the proper definition of what constitutes a MERW on a
non-irreducible graph is not entirely clear.

We have chosen to define MERWs by truncation and approximation. The definition we
provide in (2.5) is, in some sense, consistent with the general one given in [1]| (see Section 2.5),
but it is not equivalent, particularly in the R-transient case.

All trajectories of length n between vertices x and y still have the same probability or, more
generally, a probability proportional to their weight (see Proposition 2.3 and Corollary 2.1).

However, this property no longer characterizes MERWSs on BD as defined in this paper, but
instead characterizes central Markov chains on WBDs, as defined in [11].

Here, we slightly generalize the definition of a central Markov chain and the related results
to gain flexibility, allowing them to not have full support. When restricted to the latter, they
yield a classical central Markov chain. Let us briefly introduce this concept and the main result.

it) Central Markov chains. In some sense, we shall see that we might refer to central Markov
chains as Weak-MERWEs.

For instance, on the Pascal lattice, the Polya urn process with two colors is a central Markov
chain but not a MERW (see Remark 2.6).

Similar to (1.3), central Markov chains can be characterized by the so-called Positive Har-
monic Function (PHF) ¢ satisfying

p(x) =Y wlz,y)ey), (1.8)
z,/y

where y denotes that (z,y) is an edge of the BD, and w(z,y) > 0 is some weight. The
corresponding central Markov kernel is then given by p(z,y) = w(z,y)e(y)/e(x).

Remark 1.1. Caution, this does not imply that the combinatorial spectral radius p, if it exists,
is equal to one here. In fact, a vertex x of a BD encodes in itself the distance n to the root, and
thus, in a certain way, @ can be seen as a space-time harmonic function.

We refer to Section 2.5 for more details and to the Appendiz 7 for (slightly adapted) classical
results about central Markov chains.



iit) A powerful combinatorial identity. Moreover, since all paths starting from the root and
ending at the same point have a probability proportional to their weight, this leads to the
powerful and general combinatorial identity (see (7.5) for a more precise statement):

> #Ho = yle(y) = 1. (1.9)

yeXs,

Here, #{@ — y} denotes the weighted number of paths from the root & of the Bratteli Diagram
to a vertex y € X,, at a distance n of the root.

We shall see that this allows proving some combinatorial identities or reinterpreting them
by unconventional means.

For instance, the well-known binomial expansion and the Plancherel identity for the num-
ber of Young diagrams fall into this category. In particular, we give a proof of Han’s hook
length formula for binary trees [12] using this method and we generalize it in Corollaries 4.1
and 4.20. We also recover the well-known identity (5.61) for Stirling numbers of the second kind.

i11) Tree growth process. Most of these identities arise from the study of BDs associated with
tree-growing models in Section 3 (see in particular Theorem 3.1).

We focus on rooted trees because they are equipped with a well-known hook-length formula
for increasing labeling, similar to that for Young tableaux, which allows us to enumerate paths.

Notably, we show that the Plancherel growth process is the unique MERW on the Young
lattice (see Proposition 2.5).

We also describe central Markov chains and MERWs for various models of growing trees. In
particular, we reinterpret the well-known Binary Search Tree (BST) process as a MERW (see
Proposition 4.1), allowing us to recover in an elegant way the well-known asymptotics of this
process (Corollary 4.2).

Some of these models can also be interpreted as aggregation processes. For instance, we
show that the Chinese restaurant process is a central Markov chain (but not a MERW). Again,
this approach enables us to recover, in a manner that appears both direct and simple, some
well-known asymptotics of these processes (Corollary 5.1).

iv) Computer simulations. However, in practice, it is impossible in most cases to explicitly
compute central Markov chains or MERWSs on a Bratteli Diagram.

In Section 6, we propose a Monte Carlo method to estimate the asymptotic number of paths.
This method is based on a Monte Carlo algorithm by Knuth [13], which allows for estimating
the number of leaves in a finite tree.

We apply our algorithm to a growth model of pyramidal diagrams (a generalization of the
Kreweras random walk), which can be interpreted as two-dimensional Young diagrams.

Outline of the paper. In Section 2, we introduce MERWs on Weighted Bratteli Diagrams
(WBDs) and characterize them using central Markov chains. We establish connections with
previous works, investigate combinatorial identities and demonstrate that the Plancherel growth
process is the unique MERW on the Young Lattice.

Section 3 delves into prefix trees, leveraging a hook-length formula to compute path asymp-
totics and describe central measures. Ergodic measures, in particular, are linked to fragmentation
processes on the infinite genealogical tree. Theorem 3.1 characterizes all central Markov chains
in the unweighted case.

In Sections 4 and 5, we explore specific models (both weighted and unweighted) involving
d-ary trees, infinite combs, and aggregation processes. Notably, we extend Han’s hook length
formula for binary trees and compute the unique MERW of a generalized BST process with



preferential attachment. The main result here is Theorem 4.1. We connect comb models to the
Chinese restaurant process, and analyze their Poisson-Dirichlet asymptotics. Also, we introduce
constraints that lead to ties with the Young lattice and Kreweras random walks.

Section 6 presents a Monte Carlo algorithm, inspired by Knuth’s method, for approximat-
ing MERWSs when direct computation of transition probabilities is impractical. We apply this
algorithm to some pyramidal model and conjecture its limit shape, drawing parallels with the
Plancherel growth process.

Finally, Appendix 7 presents the main known results about (our slightly generalized version)
of central Markov chains, ensuring readability and completeness.

2 MERWs on WBDs

We begin with an introduction to WBDs, modifying the usual framework detailed in [11] to
incorporate countably infinite level sets. Subsequently, we introduce random walks and define
MERWSs on these lattices.

2.1 WBDs

Definition 2.1. A graded graph X = ||, Xy, is called a Bratteli Diagram (BD) if it satisfies
the following properties.

i) For every edge (z,y), we have x € X, and y € X, 41 for some n > 0.
ii) There exists a unique vertex &, called the root, with no incoming edges.
iii) Every vertex has at least one outgoing edge.

iv) Fach level set X,, is finite or countably infinite.

i) Notations. Given x € X, we denote by n, the rank k of the level set Xj that contains z. We
write z * y to indicate that (z,y) is an edge in the BD. A path s in the BD is denoted by a
sequence sg ' 81 -+, or by concatenation sgsy - - .

The set of all infinite paths starting from @ is denoted by 7T, and the set of all finite paths
of length n starting from the root is denoted by 7,. By convention, we set 7_1 = ). Also, we
denote by {x — y} the set of all finite paths that start from x and end at y. Note that each of
them has the same length equal to n, — n,.

it) Weighted structure and combinatorial dimension. To each edge x ,* y, one can assign a
positive weight w(z,y), and by extension, to every finite path s = s9 -+ 7 s, of length n,
one can assign the weight

n—1
ws = H w(Si, Sit1)- (2.1)
=0

We refer to (X,w) as a Weighted Bratteli Diagram (WBD). In the absence of a specified
weight function, we will implicitly assume that w = 1. Obviously, one may extend w to X x X
by setting w(z,y) = 0 whenever (z,y) is not an edge.

Definition 2.2. The combinatorial dimension between vertices x and y is defined as follows:
for x =y, we set d(x,y) = 1, and for x # y, we set

dlz,y)= Y ws (2.2)

se{z—y}

7



Note that d(z,y) = card({z — y}) when = # y and w = 1. To generalize, we extend d
by setting d(z, F) = ZyeF d(z,y) for any vertex x € X and subset F' C X. The following
hypothesis will be maintained throughout the paper.

Assumption 2.1. For every n € N, we have d(&,X,,) Z w, < 00.
s€Tn

2.2 Random Walks and Entropy maximization

i) Random walks setting. A random walk (X}, ), >0 is defined by a Markov kernel p(z,y), z,y € X,
which is equal to zero when (z,y) is not an edge of the graph.
Let us introduce, for any n > 0 and s € 7,

Cs={teT:YO<k<mn,tp=Ssk} (2.3)

We shall denote by A the o-algebra on T generated by all these cylinder sets.

A random walk is characterized by its distribution p starting from the root. This is a
probability measure on the measurable space (7,.4). Its marginal distribution on 7, is given
for all s € T, by

1(Cs) = p(2,51) - p(sn—1, 5n)- (2.4)

For a finite path s = sg -+ s, of length n, we shall set p(s) = p(so, $1) - P(Sn—1, Sn) in
such a way that
P(Xl = 81, ,Xn :Sn|XU :80) :p(S). (25)

We denote by RW the set of probability distributions on (7,.4) which come from a random
walk and by RW,, their restrictions to 7,. Note that one can embed RW,, — RW.

Definition 2.3. The support of a random walk (Xp)n>0, or equivalently the support of the
corresponding probability measure p € RW, is defined by

S={reX:3In>0, Py(X, ==x) > 0} (2.6)

it) Entropy mazimization. For any non-negative integer n and any probability distribution v on
Tn, one can define

Hy(v) =H(v)+ Y In(ws)vs, (2.7)
s€Tn
where H(v) = — > .+ vsIn(vs) is the usual Shannon entropy of v.

One can easily check that H,(v) can be expressed as

(Z w5> Dxr(v pn), (2.8)

S€Tn
with

Ws Vs
pn(s) = =—— and Dxr(v||p,) = Vs In (> . (2.9)
" ZteTn wy " s;; ° pin(8)

Recall that Dgr, is the Kullback-Leibler Divergence (KLD) or the relative entropy (see [14]).
It follows from Assumption 2.1 and the properties of the KLD that v — H,,(v) is well-defined
and achieves its maximum value, given by In (Z seT ws), for v = py.

Remark 2.1. The distribution u, is the unique probability measure on T, such that the proba-
bility of any path s € T, is proportional to its weight ws.

In particular, when w = 1, it corresponds to the uniform probability distribution and thus the
entropy is equal to In(#Ty,).



The proof of the following lemma is straightforward. The key point is that u,, represents the
distribution of a random walk (a priori depending on n) restricted to 7p,.

Lemma 2.1. For any non-negative integer n, the distribution p, belongs to RW,,. More pre-
cisely, the corresponding transition kernel is given for all x /'y by

_ d(y,Xp,) w(zx,y)d(y, Xp)
Poles ) =) g0 %) TSyl ) Ko 210

Furthermore, for all s € Ty, one can write

d(z,Xp)
d(2,X,)’

Pn(s) = ws z:gi;, with  on(2) =

(2.11)

Additionally, one has @,(@) =1 and for all x with |z| < n,

on(x) =Y w(z,y)en(y). (2.12)
z /Y

Remark 2.2. To perform the random walk corresponding to p,, we need to enumerate, at each
point x, the weighted number of paths d(x,X,,) leading to the nth level set X,,. Besides, note that
the restriction of uy, to Ty for k < n is not equal to py in general.

For instance, in Figure 1, the transition probabilities correspond to the unweighted case w =1
and n = 4, but even if each of the 9 paths of length 3 starting from the root has the same
probability, equal to 1/9, the distributions of the trajectories of lengths k = 1,2 are not uniform.

2.3 A consistent definition

Since X is countably infinite and all the sequences (¢, (z))p>1 for z € X are bounded by 1,
we get from Cantor’s diagonal argument that there exists a subsequence (ny)g>1 such that ¢,
converges pointwise to some ¢* : X — [0, 0o[ as k tends to infinity.

Furthermore, by using Lemma 2.1 (specifically (2.12)) and applying the dominated conver-
gence theorem (with the help of Assumption 2.1), one can verify that ¢* is a Non-Negative
Harmonic Function (NNHF) as defined below.

Definition 2.4. A function ¢ : X — [0,00) is said to be a Non-Negative Harmonic Function
(NNHF) if (@) =1 and, for all x € X,

p(r) =D w(z,y)ey)- (2.13)
z,/y

Equivalently, there exists a Markov kernel p* on X such that p,, converge pointwise to p*.
Still equivalently, the sequence of probability distribution p,, € RW,, converges in law to some
uw* € RW, in the sense that for all cylinder sets Cs € A with s € T,, and n > 0, one has

khm Hony, (Cs) = N*(Cs)‘ (2'14>
—00

Note that (2.14) does not depend on how we embed each RW,, into RW.
Moreover, these three characteristics (u*,p*, ¢*) are related by the following formulas: for
any path s from the root to some y € X,

1 (Cs) = p*(s) = ws ¢ (y). (2.15)

It suffices indeed to look at Lemma 2.1 again. This leads to the following definition.



Definition 2.5. A MERW on a WBD is any random walk associated with any limit point p*
(equivalently p* or ¢*) as defined above.

Definition 2.6. A Bratteli diagram Y is a Saturated Sub-Bratteli Diagram (SSBD) of X if
a) Y C X as a subgraph.
b) For everyy € Y and x € X such that x /'y in X, one has x € Y.

Proposition 2.1. The support X* of a MERW, corresponding to the NNHF ¢*, is a SSBD
which is given by
X ={zxeX:p"(z) > 0}. (2.16)

Proof. Note that (2.16) comes easily from (2.15). Let us prove that X* is a SSBD.
To this end, assume that ¢*(y) > 0 and let x € X such that z * y. By using (2.13) we
obtain that ¢*(x) > w(z,y)¢*(y) > 0, which completes the proof. O

2.4 MERWs as particular central Markov chains.

The subsequent results arise from the bijection between central measures and PHFs, as well as
the construction of the associated Martin boundary detailed in [11].

Since this article allows countably infinite level sets, we have concisely reviewed and
adapted their results in Appendix 7 for the sake of completeness. The notions of central measure
and central Markov chain are replaced by the notions of saturated central measure and saturated
Markov chain (see Definition 7.1), and PHFs are replaced by NNHFs.

Roughly speaking, the main difference is that we allow the common support of these objects
to be a SSBD, not necessarily the whole BD.

To understand Corollary 2.1 below, we need to briefly recall some results and introduce some
additional notations.

First, a central measure on a WBD X is a probability measure p on (7,.4) such that
wsp(Cr) = wp(Cy) for all y € X and s,t € {@ — y}.

As a consequence, it turns out that u € RW and the corresponding random walk has full
support. Besides, conditionally on any starting and ending points x, ¥y, any trajectory s from x
to y has a probability proportional to its weight ws (equal to 1/#{z — y} when w = 1).

Furthermore, there are one-to-one correspondences between central measures and PHFs, as
well as between ergodic central measures and the (combinatorial) Martin boundary.

Here, we shall say that a path ¢t € T converges to ( € 90X, a point of the Martin boundary,
if and only if, for all z € X

K(z,():= lim @, tn) exists. (2.17)

n—o0 d(Q, )
Moreover, we denote by m, the nth marginal of u,, defined for any y € X, by

)= Y o) = (2.18)

se{g—y}

Corollary 2.1. Let (X,,)n>0 be a MERW and let p*, ¢* and X* be defined as in Section 2.3.
Then p* is a central measure on the SSBD X* and (Xy)n>0 is the associated central Markov
chain. In particular, for all z,y € X* (defined in (2.16)) and all t € {x — y} of length n:

wt

P(Xl = tl, N 7Xn—1 =1p_1 ‘ XO = .’L',Xn = y) = (219)

Zsé{x%y} Ws .

10



Furthermore, there is a bijective relationship between MERWSs and the limit points m*, in the
space of probability measures on XUOX, of the sequence (my)n>0. Fach MERW is characterized
by a NNHF ©* such that

¢*(x) = | K(z,¢)m"(d]). (2.20)
oxX
Proof. These results are mainly direct consequences of Appendix 7 and Section 2.3.
Regarding the last point, we recall that X 119X is a compact metric space. Besides, one has

on(x) = m :/X j((;:’z))mn(dy), (2.21)

If m* is the limit point of (my, )r>0, it is supported on 90X since m,(X,) =1 for all n > 0.
We get from (2.21) we get that (¢n, )k>0 converges to some ¢* since y — j((g’z)) is bounded and
continuous on X LI 9X for all z € X. Finally, we obtain (2.20).

Reciprocally, if (¢n, )k>0 converges to some ¢*, then by compactness, there exist some sub-
sequence (I;)k>0 of (ng)r>0 and m* a probability measure on 0X such that (my, )k>¢ converges
to m*. Again, we obtain (2.20).

O

Remark 2.3. Fquation (2.19) means that, conditionally on their starting and ending points,
the trajectories of a MERW on a WBD have probabilities proportional to their weights. We shall
prove that the converse is true for MERWSs on positive R-recurrent graphs (see Proposition 2.3).

2.5 Connection with MERWs on irreducible graphs

In this section we explore the relationship between MERWSs on BDs as defined above and MERWs
on irreducible weighted graphs G, possibly infinite, as introduced in [1].

Again, denote by A the corresponding weighted adjacency matrix and fix a base point 0 € G.
Define the level sets (X,,),>0 recursively as follows: Xg = {@} = {(0,0)} and

Xps1 :={(n+1,y): Jx € G, (n,x) € X,, and A(z,y) > 0}. (2.22)

We say that (n,x) 7 (n+1,y) if and only if A(z,y) > 0 and we define the weight function
by w((n,z);(n+1,y)) = A(z,y). Note that Assumption 2.1 is satisfied if

sup Z A(z,y) < 0. (2.23)
mEGyEG

Let R denote the convergence parameter as introduced in [9] and p = R~! the so-called
combinatorial spectral radius. For all 0 < » < R and all positive (1/r)-harmonic functions v,
when they exist, one can produce a PHF ¢ on (X, w) by setting

e(n,z) =r"P(x). (2.24)

Conversely, a uniform aperiodicity criterion is given in [15,16] to ensure that a PHF ¢ can be
written in the manner described above. Note that any MERW on the WBD can be calculated
by studying the limit points, as N goes to infinity, of

d((n,z); Xy) AN ()
d(o;Xy)  AN1(o)

en(n,z) = (2.25)
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When G is finite, the two definitions of MERWs coincide since in that case the spectral
theorem applies and we have
Y(z)

P
where ¢ is the unique positive solution of Ay = py with ¢ (o) = 1. More generally, we get
from [9, Theorem 7.2| the following result.

lim pn(n,z) = (2.26)
N—o0

Proposition 2.2. Assume that A is R-positive. Then the definition of the MERW on G given
in [1] is equivalent to the definition of the MERW stated in this paper.

To go further, one can see that (2.19) characterizes MERWSs on R-positive graphs.

Proposition 2.3. Assume that A is R-positive. Then the unique MERW (X,,)n>0 is the unique
random walk on G such that, for alln >0 and xq,...,z, € G,

H?:_o1 A(xi, ig1) '

P(Xlle,---,Xn—lzxn—l|X0::U0’X”::C”): An(mox )
b} n

(2.27)

Proof. Assuming (2.27) and letting P2*; be the set of paths from y to z of length n — 1, one
can easily check that

A"y, 2)

Ty P =2) (2.28)

ple,y)=> > pla Sy S S z) = Alx,y)

2€G cePy* zeG

Let us denote by ¢ and % the unique (up to a multiplicative term) positive left and right
eigenvectors of A associated with the combinatorial spectral radius p such that (¢, @) = 1 for
the usual scalar product.

Let d > 1 be the period of A, i.e. d = ged(S) where S = {n > 1 : p"(e,e) > 0} for
some e € (G. By using again |9, Theorem 7.2|, there exists a unique 0 < k < d such that
Atk (2 9) > 0 for all n sufficiently large and

AT (@, y) ~ pTRY () (y). (2.29)
n—oo
Therefore, we deduce the result from (2.28) and the dominated convergence theorem. O]

Remark 2.4. The latter proof provides a method to approximate MERW on R-positive graphs.
Indeed, let f: G — (0,00) satisfy >, cq f(y)p(y) < oo, where ¢ is the left p-eigenfunction.
Set for any n > 1 and x,y € G,

n—1
pale.) = Alw) S, (2.30)

In the case when f = 1, the probability p,(x,y) is simply the (weighted) proportion, among
the paths of length n starting from x, of those beginning with the transition x ~y. Whenn =1,
this corresponds to the usual GRW.

Stmilar arguments as before show that p, converges pointwise to the MERW kernel as n goes
to infinity.

12



2.6 Illustrative examples

This section is devoted to some examples that illustrate the concepts introduced in the previous
sections (but also in Appendix 7) and present some techniques and approaches for studying

MERWs on WBDs.

i) About the support and uniqueness. The first two toy models of BD X we consider are detailed
in Figure 2. The first one shows that there may not exist MERWSs with full support, that is with
X* = X, whereas the second one highlights that there may exist several MERWs.

e The first model consists of level sets X,, = {n;,n,}, for n > 1, with the edges @ * 1;,
ie{l,r}, i S (n+1), ny / (n+ 1)y, n>1. We find that d(&,n;) = 1, d(&,n,) = n, and
more generally d(n;,m;) = d(n,,m;) = m —n, d(n;,m,;) = m —n, and d(n,,m;) = 0 for all
m>n> 1.

By using (2.17) one can see that dX contains only one point, denoted as §. The unique
MERW corresponds to the unique extremal NNHF ¢* = 5, where p5(n;) = 1 and ¢s(n,) = 0.
This implies that X* = {&, 1,,2,, ...}, indicating that no MERW with full support exists.

e Regarding the second model, we denote X,, as L,,LUR,,, representing the left and right-hand
sides when n > 1. One can check that 90X = {l,r}, where ¢;(z) = 1/card(L,) if z € L,, and
vi(z) = 0if x € R,,. Similarly, ¢, is defined by exchanging the letters [ and r.

Considering m,, as defined in (2.18), we observe that my,(L,) = 1/2 (resp. 1/3, 2/3) when
n =3k +1 (resp. n =3k + 2, n =3k + 3) for some k£ > 0. In the light of Corollary 2.1, there
are three distinct limit points m*, each corresponding to one of the three MERWSs depicted in
Figure 2. Therefore, there is no uniqueness for this model.

X3
Xy

Figure 2: The first example, on the left, show that the unique MERW has
no full support. On the the second one, it is represented the transition
probabilities of the three possible MERWs.

ii) Correspondence with irreducible graphs. Consider the usual BD X = N2, where the nth level
set is X,, = {(k,n — k) : 0 < k < n}. This BD is called the Pascal lattice in [11].

It is known that there is a one-to-one correspondence between NNHFs and probability dis-
tributions m on the interval [0, 1]. This correspondence is established through

1
mln — k) = /0 (1 — p)*~Fm(dp). (2.31)

13



It turns out that an infinite path ¢, = (kn,n — k) is regular if and only if there exists a
p € [0,1] such that lim, o kn/n = p. Furthermore, since the BD is regular of degree 2, the
unique MERW is simply the GRW, and it is associated with m* = ¢y /5.

Indeed, let w5 be the distribution of the central Markov chain (starting from the root)
corresponding to ¢y = 05y /- Since all the paths of length n starting from the root have the
same probability 27", the restriction of 11,9 to Ty is equal to . Necessarily p* = puy/o.

Remark 2.5. Note that the combinatorial identity (1.9) in this case is nothing but the well-
known binomial expansion.

Remark 2.6. It is interesting to observe that the central Markov chain corresponding to the
uniform distribution m on [0, 1] leads to the Pdlya urn model with two colors.

This model is known to be an exchangeable process, exemplifying property (2.19): all paths
starting and ending at given points have the same probability when w = 1.

In light of Section 2.5, we can interpret X as the BD corresponding to the graph G = Z.
The unique (1/7)-harmonic function on G, with 0 < r < 1/2 and 9(0) = 1, is expressed as
Y(x) = e*® where 2 cosh(a) = 1/r. Applying the change of variable x = 2k — n € Z, we obtain

_ n P %
R C (2.32)

Consequently, every extremal NNHF of the BD can be represented as in (2.24) (even if the
assumptions outlined in [15] are not fully met).

To extend our analysis, introduce a weight function w into the aforementioned BD. Let us
set w(z,y) =1 for all edges except those originating from the diagonal, where

w((i,4), (i +1,4)) =a and w((:,1),(i,i+ 1)) = 5.

RS
RRRRRRKKS
QRRRRRRKS
QRRRRRKS
IR
Re3o%
@

ﬁ «

7, —o—+ -
KA
ﬁ «

Figure 3: Weighted Pascal lattice

We refer to Figure 3. In that case, describe the central measures and obtaining the corre-
sponding MERWSs presents a more complex challenge. Let us set

1 1\?
atp 1-— <1 - 7) . op=s"1 and q=(2ys)"" (2.33)

Ty 2
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Proposition 2.4. There is a unique MERW on the latter weighted Pascal lattice. It is associated
with the NNHF defined by

-1 _ ||
e N SRV R N0 e R U TSV X 1

Recall that for all (k,n — k) € X,,, we set x = 2k — n.

Proof. Let A be the weighted adjacency matrix on G = Z defined as A(z,x + 1) = 1 for = # 0,
A(0,1) = «, A(0,—1) = 3, and A(z,y) = 0 otherwise.

Following (2.25), to compute the MERWSs, we need to study the asymptotics of the weighted
number of walks of length n. To this end, introduce the generating functions

Fu(z) = ZZA"(x,y)z". (2.35)

n>0y€eZ

One can check that Fy(z) = 1+ 2F;41(2)+2F;—1(2) on Z* and Fy(z) = 1+ azF1(2)+BzF_1(2).
Thereafter, we can obtain

1 2(1—7)z (R(2)"

1—+1—422

Fx = — 5 h == 2
) =15, 7 102 To292R() “hee EB) 2 (2:36)
Assuming v < 1, one can see that 1/2 is the smallest singularity of F,(z), leading to
¥ 1
F, ~ 21| — —_. 2.37
(2) z—>1/2\f<1—'y+|m|> Vv1—2z ( )

On the contrary, when v > 1, the smallest singularity occurs at s € (0,1/2) given in (2.33) and
one can check that 2ysR(s) =1 and

2 p(s)lel
Fu(z) ~ 1<1_i> ?Egssiz' (2.38)

Since 1/(1—2z) is analytic on C\{1/2} and R(z) has an analytic continuation on C\]1/2, oo],
it follows that F,(z) admits an analytic continuation in some A-domain (an open pacman-shaped
region with the mouth corner located at the singularity s).

Then, one can apply the transfer theorem, as detailed in [17,18], and derive the asymptotics
of (2.25) in both cases, which imply (2.34). O

i4i) The Young Lattice. Let us introduce the celebrated Young Lattice Y = | |, .y Yp, a funda-
mental structure in combinatorics. This is the BD whose nth level set can be defined as

Y, = (nl,ng,---)eUNk:nlzngz--- and ni4+ne+---=n,. (2.39)
k>0

Here N = {1,2,---} and Yo = {0}.

As illustrated in Figure 4, each vertex of Y can be represented by Young diagrams and
finite paths starting from the root in Y are represented by standard Young tableaux. For a
comprehensive understanding, we can refer to [11,19].
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13

2 6 7 8 | 15

3 4 5 | 10 | 11 | 16 | 17

Figure 4: A standard Young tableau (in French notation) representing a path
'Y from the root to the partition 8 +5+ 4+ 1 = 18.

It is known that the boundary of Y is the Thoma simplex

NN =<Ra1>2a>-->0;61>p>-->0 Z%"FZﬁiﬁl . (2.40)
i>1 i>1

To explain this boundary, let us consider an infinite path (A,),>0 in the Young lattice. The

modified Frobenius coordinates of A,, denoted by fi(n) and gi(n), are depicted in Figure 5. It can

be shown that the path A, is regular if and only if there exist a, 5 € JY such that for all 4 > 1,

4 po
lim “— =qa; and lim =— = j;. (2.41)
n—oo N n—oo M

‘ = - -
g3 g2 g1 0 fl fQ fg

AN
[ &

\2

Figure 5: Modified Frobenius coordinates of a Young diagram (in Russian
style). For example, g1 = 1/2 and f; = 3/2.

The Plancherel growth process corresponds to the central Markov chain associated with

a = =0. It is the central measure given for any A of size n (denote A - n) as

2 |
B, = XN e d(z,0) = LS
H(z‘,j)@\ ha(i, 7)

n!
The right-hand side of the latter equation is the celebrated Hook length formula, where
hx(i,7) denotes the hook length of the cell (i,7) in A. See for instance [20] for an overview.

(2.42)
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Proposition 2.5. The unique MERW associated with the Young lattice is nothing but the
Plancherel growth process.

Proof. To begin with, the Gelfand measure, which corresponds to selecting a path of length n
uniformly and examining the Young diagram A obtained, is given by

d(a, )
> pin A(2, 1)

Hence, it coincides with the distribution m,, introduced in (2.18).
Furthermore, it turns out that the (almost sure) limit shape of a large random Young diagram
is identical under both the Plancherel and Gelfand measures. For further details, see [21].
Therefore, the proof follows from Corollary 2.1.

Gn(\) = (2.43)

0
3 Maximal entropy growing trees
Following 22|, consider the infinite genealogical tree
oo
T=|JN", with N°={0}. (3.1)
n=0

The elements of Z are sometimes called individuals. For any ¢ € Z, we denote by |i| the
integer & > 0 such that i € N*. We say that i belongs to the k-th generation. For any
i = (i1, - ,ix) € N¥ and j € N, we set ij = (i1,--- ,ix,5). When i = () (that is &k = 0) we
simply write 77 = 7. The individual 75 is named the j-th child of ¢ and ¢ is the parent of 7.

More generally, we set ij = (i1, , ik, J1, - , /i) in an obvious meaning. The individual ij
is a descendant of ¢, and ¢ is an ancestor of ij.

For a subset 7 C Z, we denote by |7| € NU {oo} its cardinal (named also its size). The
following definition is borrowed from [23].

Definition 3.1. A subset T C Z is called a prefix tree if ) € T and for alli,j € Z, i € T whenever
ij € 7. We denote by P, the set of all prefix trees of size n > 1 and we set

P=|]Pu (3.2)

n>0

3.1 The BD structure of P

The set P of finite prefix trees is naturally endowed with a BD structure where the nth level
set is Pp+1. More precisely, one has 7 o if and only if o = 7 U {ij} for some i € 7 and 7 € N
such that ij ¢ 7. Note that {r — o} # 0 if and only if 7 C 0.

Remark 3.1. In the setting of Section 2.1, the nth level set of P consists of prefix trees of size
n+ 1. For instance, @ = {0} is the root of the Bratteli diagram P, its size is equal to 1.

For any ¢ € 7 and any prefix tree 7, one can define the prefix tree of all the descendants of ¢
in 7 by setting A
D ={jel:ijer} (3.3)

In particular, the number of descendants of ¢ in 7, including ¢, is given by |T(i)|. In the case
when i ¢ 7, one has 7 = () and |7(| = 0.
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Remark 3.2. Similarly to the correspondence between Young diagrams and standard Young
tableaux illustrated in Figure 4, there is a one-to-one correspondence between paths in P and
rooted trees with increasing labelings.

To go further, the number of ordered increasing labelings of a given rooted tree o is

(3.4)

Even though the proof follows easily by induction, we can refer to [24, Chap. 5.1.4, Exer. 20].
More generally, for any 7,0 € P with 7 C o, it is straightforward to show that the combina-
torial dimension between 7 and ¢ is given by

d(r,0) = o\ !

i

i€o\T

(3.5)

This equality is known as the hook-length formula for increasing labeled rooted trees, similar
to that given in (2.42) for standard Young tableaux.
In particular, we obtain that, for all 7 C o0 € P of size k and n respectively, one has

d(Ta o) . HiGT |0(i)|
d(@,0) n---(n—k+1) (3.6)

Then, by using the results in Appendix 7 (see also Section 2.4), one can easily describe the
structure of the combinatorial Martin boundary of P.

Theorem 3.1. An infinite path (7,)n>0 in P is reqular if and only if, for all i € I, there exists

0 < o; <1 such that A
)
lim = q;. (3.7)

n—oo n

Consequently, there is a one-to-one correspondence between the Martin boundary OP and
labeled infinite genealogical trees (o;)ier € [0,1]% satisfying

ag=1 and YieZ, a;= Z Q- (3.8)

The corresponding extremal NNHFs and ergodic saturated central Markov kernels are then
given respectively by
o(T) = Hai and p(T,0) = o, (3.9)
€T
for any 7,0 € P with o = 7 U {ij}, wherei € 7 and j € N with ij ¢ .
In particular, we deduce from (7.5) (equation (1.9) in the introduction) the following combi-
natorial identity: for all n > 0 and arbitrary labels (ov;);ez satisfying (3.8),

n!
U;n W gai =1. (3.10)

1€0

This allows us to reformulate this theorem as a multivariate analog of a hook length formula
for trees, which can be viewed as another kind of multinomial expansion.
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Corollary 3.1. Let Ot denote the set of leaves of a prefix tree T € P. For any n > 0 and for
any vector of complex numbers (c;)icor, we have the following identity:

1 1 !
> HW Yo —nl<zaz> (3.11)

c€EP, \i€0 jer®nor 1€0T
oCT

Proof. The statement follows from (3.10) by noticing that the «; corresponding to each node

can be expressed via the o; of leaf vertices, and by dropping oy = 1 to ensure homogeneity.
More precisely, assume that (o;);cor is a non-negative family and let («;);ez the unique

extension characterized by the boundary values (a;);cor, a; = 0 for all ¢ ¢ 7, and the relations:

Vier:={icr|FjeNjijer}, ai=) aq (3.12)
keN

Note that o; = ;e ()ng, @ for all i € 7. In particular, ag = >_,cp, @; and one can assume
without lose of generality that ay = 1 by homogeneity, in such way that (3.10) applies.

Finally, because o; = 0 as soon as i ¢ 7, one can restrict the sum over ¢ C 7. Since this
identity is true for positive values of «;, and both sides are multivariate polynomials, it holds
for all complexes values as well. O

3.2 Underlying skeleton associated with a boundary point

For any o € 9P, we denote by u, the corresponding saturated ergodic central measure and by
Sq its the support (again, we refer to Appendix 7 for formal definitions).

Definition 3.2. We call the support of «, that is So = {i € T : ay; > 0}, the skeleton of uq or,
equivalently, the skeleton of the associated saturated ergodic central Markov chain pi,.

Roughly speaking, this infinite prefix tree serves as the skeleton upon which the trees given
by the saturated ergodic central Markov chain, denoted by (7,,)n>0, evolves.
In particular, by using (3.7), one has

”C“(U TTn:Sa> =1 and Sy={r€P:7CS8} (3.13)
n=0

One can ckeck that S, is an infinite prefix tree such that
Vie Sy, k€N, ik € S,. (3.14)

Reciprocally, given an infinite prefix tree S satisfying (3.14), one can easily check that there
exists at least one o € P such that S, = S. This motivates the following definition.

Definition 3.3. An infinite prefix tree satisfying (3.14) is called a skeleton.

3.3 Correspondence with fragmentation processes

There exists a correspondence between the boundary 0P and fragmentation processes.
To clarify this relationship, let S be an arbitrary skeleton and consider (v;);cs a family of
probability measures where, for each i € S,

supp(v;) ={j € S: Ik e N, j =ik}. (3.15)
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Then, one can associate an element o € 9P, having S for skeleton, by setting oy = 1 and,
Vie S, Vjesupp(vi), aj = v;(j)oy. (3.16)

Reciprocally, given o € P arbitrary, the construct the corresponding family of framentation
measures (V;)ics,, it suffices to set for all i € S, and j € S, a child of i, v;(j) = /ey

Also, introducing C; C N as the set of k € N such that ik € S, each probability measure v;
can be seen as a probability measure on N whose support is C; by setting v;(k) := v;(ik).

We refer to Figure 6 for an illustration.

Vi =3 qi Ok
k
Qi = ik O

Sair=1
k

Figure 6: Correspondence between the labels («;);c7 and the fragmentation
probability measures (v;);e7.

3.4 About MERWs

Since d(@, P,) = oo for all n > 1, Assumption 2.1 is not satisfied, thereby precluding the exis-
tence of a MERW on the BD of prefix trees. To address this issue, we propose two alternatives:

1. Introduce a weight structure on P such that Assumption 2.1 is fulfilled.

2. Select a skeleton S where d(@, PS) < oo for all n > 1, with
P ={reP,:7CS} (3.17)
Then, investigate the MERWs on PS = Lnso PS.1. In this scenario, we also refer to
MERWS evolving in the skeleton S, which can be seen as an additional constraint.
4 The example of d-ary trees

In this section, we present several examples involving d-ary trees, that is, the case when the
underlying skeleton is given by the complete infinite d-ary tree

Sd:{i:(iliQ"'>GI:VlngM,1§ik§d}. (4.1)

Equivalently, we assume in this section that the trees grow into Sy.

4.1 Uniform fragmentation measure

We first consider the basic model obtained when the fragmentation probability measures (3.16)
are uniform over {1,--- ,d}.
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One can easily check that the corresponding boundary point a € 9S8y is given for any i € Sy
by a; = d~l. Note that for any finite d-ary tree 7,

1

1ET 1ET

This model of tree growth is discussed in [25] and also appears in [26,27] as a specific instance
of an Internal Diffusion-Limited Aggregation (IDLA) process on a tree.

Surprisingly, the general combinatorial identity (3.10) (with the help of (4.2)) enables us to
derive, as a special case, Han’s hook length formula for binary trees, as found in [12].

Corollary 4.1. Let By(n) denote the set of all d-ary trees with n vertices. Then

3 ! = 1. (4.3)

rCBan) H |7_(1)) |d|q—(v)|71

vET

4.2 Dirichlet random environment.

Let us consider (U; 1, ,Uiqd)ies, a family of i.i.d. Dirichlet random variables with positive

parameters aj, - - ,aq: i.e. having for density on the (d — 1)-simplex
{(x1,-- ,q) rwr+ -+ xg=1, 21,--+ ;24 > 0}, (4.4)

the function
1 d
a;—1

_ €Tt R 45
B((Il,"‘,(ld)il_‘[ ! ( )

where B denotes the usual multivariate beta function.
Then define the random fragmentation probability measures by

d

vi(w) =Y Ui j(w)dij, i€ Sy (4.6)
j=1

It corresponds to these random fragmentation measures a random point a(w) in the Martin
boundary 0S; (see Figure 6). Specifically, for all n > 1 and 4y,--- ,i, € {1,---,d}, one can
check that

ail"'in = U@,il Uil,igUilig,i;; e Uil"'in—lyin' (47)

It follows (see (3.9) and Figure 7 for an example) that the corresponding random NNHF on
Sq is given by

d L.
u(r) = [T T] Vi)™, (4.8)

iy I=1

where 7 = {i € 7| 3j € N,ij € 7} denotes the set of internal nodes of a prefix tree.
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211

22

Figure 7: A binary tree 7 where the leaves O7 are represented by squares and
the internal nodes 7 by filled circles. Here, o(7) = U51U171U32U2271U2171U2’2.

i) Annealed environment and corresponding IDLA-like random walk. In light of the Polya urn
process, which can be obtained by the taking the mean over the uniform probability measure of
the extremal harmonic functions on the Pascal lattice (see Remark 2.6), one can consider the
PHF on S, defined by @ = Elyp].

Then, simple calculations leads to

- B(aj + |7V, ag + [70D))
) = , 4.9
?(7) H Blar, - .ag) (4.9)
IS
and we obtain that the central Markov kernel p associated with @ is given by
p(r, U {1 Jr—1x})
aj + |7-(j1)’ aj, + |7-(j1j2)| aj, + |7—(j1"'jk—1)| aj, +0 (4.10)

A+ 7| =1 A+ |70 -1 A + |7l de=2)| — 1 A 4 |70 de-1)| — 17

for every k > 1 and j1,--- ,jx € {1,---,d} such that j;---jx—1 € 7 and ji -+ jrx—1Jk ¢ 7, and
with A = a; + --- + a4. These transition probabilities have an IDLA-like interpretation.

Let (7n)n>0 be the corresponding central Markov chain on S;. To obtain 7,41 from 7,, it
suffices to perform an appropriate RW on Sy, starting from the root, until exiting 7,,, and then
add the newly visited node. More precisely, at each node ¢ of 7,, we have to choose a child ij,
j€{l1,---,d}, with a probability proportional to a; + |7'7(LZJ)|. Recall that 77) = § when ij & Tn,
that is ]T,(Z”)\ = 0. We refer to Figure 8.
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a1 +2 @
a1+2+az2+1 @

td NG\ — N "teel,
..
~u

a1+24ax+4
as+0 "
aj+1+az+0

Figure 8: IDLA-like random walk. Example with d = 2 (binary trees). The
probability to add the node 212 is given by the product of the transition
probabilities appearing on the directed edges.

i) The d-ary search tree process. In the case when the a; above are all equal to 1/(d — 1) and
|7| = n, we can rewrite (4.10) as

1

T (4.11)

p(r, 7 U{v}) =
for any of the 1+ (d — 1)n available vertices v such that 7 77U {v}.
The case when d = 2 corresponds to the usual Binary Search Tree (BST) process and so we
refer to this process as the d-ary search tree process.

By using Theorem 7.1, we can derive directly some well-known asymptotics which can be
found in |23, Chap. 6.2.2].

Corollary 4.2. Let (1,)n>0 be the d-ary search tree process. For anyi € Sg and j € {1,...,d},

|T7Sij)’ a.s
lim — ="V, , (4.12)
n—00 (4) I
7"
where the (Ui 1,- -+ ,Uid)ies, o family of ii.d. Dirichlet random variables with parameters
1
ap=---=aq4=——.
1 d d—1

Proposition 4.1. The unique MERW relative to the complete infinite d-ary tree Sq is the d-ary
search tree process.

Proof. Since at each step the transition probability (4.11) depends only on the size of the current
d-ary tree, all the paths of length n starting from the root have for probability

ﬁ 1
AT -1k

Similarly to i) Section 2.6, we obtain that the d-ary search tree process is the unique MERW.
O
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4.3 Adding preferential weights

To go further, we can consider weighted d-ary trees where the weight assigned to adding the jth
child of a node 7 for the first time among the other children is denoted by wj ;.

For a finite path T' € {& — 7} starting from the root and ending at 7, define for each
Jj € {1,...,d} the set N; as the collection of all internal nodes i € 7 for which ij is the first
child of ¢ appearing in the trajectory. In other words, among the children of ¢ appearing in 7,
17 is the one with the smallest label. Observe that Ny, ..., Ny form a partition of 7.

The weight of T' can be expressed as (see Figure 9 for an example)

d
wr = H H ’LUi,ij. (4.13)

j=14ieN;

Wil = T, Wiz =Y
Ny = O AN
wy = 23y?

Figure 9: A path T of length 8 in the infinite rooted binary tree, where z
(resp. y) is the weight assigned when adding the first (resp. second) child of
any node for the first time.

Lemma 4.1. For all finite d-ary tree o, one has

]! I 7 10w

d(g,0) = 4 4.14
(2.9) [0 s lo@-1 (4.14)
! 1€0
1€0
More generally, for any d-arry tree T included into o,
d Gy, -
| 1|0 Wy 4
d(r,0) = oA 7! I1 2= [0 wisy. (4.15)

[ico\- o] o] =1

ie(e\7)U(6NoT)

Proof. To compute the combinatorial dimension of such increasing labeled trees, we use the
bozed product method from [18, I1.6.3].

A bozed product of two labeled combinatorial classes A and B (in our case, sets of prefix
trees), denoted as C = A" x B, is a class consisting of pairs of objects (a,b) € A x B such that
the minimal label of a is less than the minimal label of b.

The number of such pairs (a,b) such that a and b are of size k and n — k respectively can be

counted by the formula
n—1 k(n
(Y= () o

where Ay and B,,_; denote the number of objects of size k € N and n — k € N from A and B
respectively.
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Therefore, assuming that the first child of the root is j € {1,...,d} (equivalently, that the
minimal label of (/) UL, £ o® belongs to the jth component), and using this counting principle,
one get the recursive formula

d

d(@g,0) = Z o] = 1w@7j (,J o] = 1 > Hdk (o, ok (4.17)

where dj, denotes the combinatorial dimension in which the weights w; ;; are replaced by wg; kij,
and (k1 n kd) denotes the usual multinomial coefficient.
Thereafter, the proof of the lemma follows by induction. O

By using Lemma 4.1, we obtain results similar to those in Theorem 3.1. The proof follows
from simple calculations and is omitted.

Corollary 4.3. The normalized extremal NNHFs of this WBD take the form

=[J e H : (4.18)

€T j 1 QijWiyij

with ag = 1 and a; = ;1 + ...+ aq € [0, 1] for any i € Sy. Again, the «; represents the
asymptotic proportion of descendants of © in a reqular path.
Besides, the corresponding saturated ergodic central Markov kernel is then given by

_ MW ifi e o,
d
p(r,rU{ij}) = { k=1 QikWiik (4.19)
Qj, if i ¢ Ot and ij ¢ T,

foranyi €T andje{l,...,d}.
As a consequence, we obtain the following generalization of Han’s hook length formula (4.3).
Corollary 4.4. Let By(n) be the set of all d-ary trees with n vertices. Then

0 Sy [T |,

y et O <w1+~-+wd>'af'_ 1 <w1+---+wd>" (4.20)
T('U) 1 _7' . .
rBatn H‘ )|l d n! d
veT

Proof. Consider the uniform fragmentation measure case as in Section 4.1, that is a; = d~
and w; ;; = w; for all i € Sgand 1 < j < d.
By using (4.2) and by noting that

N N
=" = ( . ) : (4.21)
o D1 Qij Wi D1 Wi

1ET

we deduce the result from (4.18) and the general combinatorial identity (7.5). O
As an example, when d = 2 and n = 3, we obtain
1 [ w +ws 3_ 1 fw +ws 3 1 w1 + Wy
6< 2 >_12 2 +48,Zw’w3 A
1<i,j<2

It is much more difficult to describe the MERWs in full generality. However, drawing on the
previous situation, one can construct them using appropriate IDLA-like random walks under
some additional assumptions.
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Proposition 4.2. Assume that Zi:l wi ik, = d for all i € Sq. Then there is a unique MERW.
The Markov kernel can be written, for any d-ary tree T of sizemn, i € T and j € {1,--- ,d}
such that ij & T, by
ma ZfZ ¢ 87—7
pirrufi)={ (1.22)
g, i€ o
Proof. We define an increasing sequence of d-ary trees (7,)n>0 as follows. Set 70 = {0} and,
given 7,, we perform a random walk on Sy.
The transitions of this random walk are such that at each node i of 7,,, we choose a child ij,
where j € {1,--- ,d}, with a probability equal to

(45) _ (45) _ (i)
L ] A N S C . I e At S

zk:11+<d—1>|m“\ At d-)(R =1 14 (-]

when i is not a leaf, and with a probability proportional to w;;; otherwise. Once there exits 7,,
we add the newly visited node v and we set 7,41 = 7, LU {v}.

Denote by u the distribution of the corresponding random walk. Let T be any path starting
from the root and ending at 7 of size n and denote as previously by NN; the set of internal nodes
i of 7 such that ij is the first child of ¢ appearing in the path.

Observe that the probability of such a path T is given by

n—1 dws
(T) = — (4.24)
8 ]!Z[ _1kHZ€HN Zk; 1wz7,k

Here, we use the fact that 1 + (d — 1)[7®)| = d when k € O7.

Noting that the latter probability is proportional to the weight wr defined in (4.13), in the
case when Zi:l w; it = d, we deduce that the distribution p, in (2.9) is, in this case, simply
the restriction of u to 7, leading to the desired result. O

In the sequel, we assume that d = 2 but also that that there exists x,y > 0 such that w; 1 = «
and w; o = y for all 7 € Sy as in Figure 9.

Theorem 4.1. There exists a unique MERW. The corresponding PHF is given for all binary

tree T by
1 9 I7|
_ 4.2
o= () (1.25)

In particular, the non-zero transition probabilities of the MERW are given by

2z 1 if1€0r and j =1,

p(rru{ig) =1 stymr fi€0T andj=2, (4.26)

F €T andijéT.

Furthermore, let (Tp)n>0 be the corresponding MERW starting from the root. Then, for all
i€ 8y and je{1,2},
7| 1.

»

lim

n—00 ’ (1) |

Vi,j7 (4'27>
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where (Vi1,Viz2)ies, are i.i.d. random variables on the simplex {(t,1—t) : 0 <t < 1} having for

density the function
2zt +2y(1 —t)
hyo(t) = —————=. 4.28
) = (1.25)

Remark 4.1. Note that the case when s = x 4+ y = 2 is covered by Proposition 4.2.

Remark 4.2. It is well known that the height H, of a random BST of size n is of the order
clog(n) for some positive constant ¢, as n goes to infinity (see Théoréme 6.22 in [23]).

This case corresponds to x = y = 1, and it could be interesting to study the asymptotics of
the height of the MERW for arbitrary x,y > 0.

Remark 4.3. A similar result can be stated and proved for weighted d-ary trees, where the
MERW turns out to be given by

dz; o -
o S@ony Fi€0T andjefl,... d},

p(r,TU{ij}) = (4.29)

m, ZflET&ﬂdlj%T
Here, x; denotes the preferential attachment of the jth child of a leaf for the first time.
We observe that these transition probabilities are homogeneous with respect to these parame-

ters, in contrast to the weights of the paths (see, for instance, the example in Figure 9).

Proof. We first study the asymptotics of the total combinatorial dimension T),+1 = d(&,X,,).
Recall that X,, represents the set of binary trees of size n+1, in such a way that T}, corresponds
to the total weight of increasing labeled trees of size n, for n > 1.
For instance, we have T} =1, Ty = x +y and T3 = 2% 4+ 2zy + 32 + = + .

Lemma 4.2. For all n > 1, one has

T = (@ +) (4.30)

n—1 n—1
T, Ty T,
n T Z (k . 1> kLn—k
k=1
Proof of Lemma 4.2. The lemma relies on the following observation: a binary tree of size n + 1
can be either

1. a tree whose root has only one child;
2. a tree whose root has two children.

The first case corresponds to the term 7T,,, multiplied by = or y depending on whether the
first or second offspring of the root is present.
In the second case, we distinguish which offspring ¢; € {1, 2} was created first, corresponding

to multiplication by = and y. In each of these two cases, let k € {1,--- ,n—1} be the size of the
subtree containing all descendants of ¢;. Writing {1,2} as {c1,c2}, the subtree containing all
descendants of ¢a must necessarily have size n —k € {1,--- ,n — 1}. We then need to distribute

n labels between these two increasing labeled rooted trees, with the constraint that the subtree
of size k contains the smallest one. The number of such choices is given by (Zj), similarly to
the Boxed product (4.16).

This completes the proof. ]

In the following, we set s = x + y and we introduce the exponential generating function
oo un
T(u) = T (4.31)
n=1
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Lemma 4.3. The recurrence (4.30) translates into the language of generating functions as
T (u) =14 s%(u) + s/ T(v)0pyZE(v)dv. (4.32)
0

Proof of Lemma 4.3. Noting that T(u) =u+ ), 5, T,“: and using (4.30), we obtain

un—l
= 1+sY T, ut”? sy ni n=A\p o (4.34)
- i "= 1) e\ = k-1 L N T

Since the first sum in (4.34) is equal to T(u), we only need to focus on the second one. Besides,
regarding this sum, it actually starts at n = 3 because when n = 2, the term is zero.
Then, note that

u?’L
0uT(u) =) To1 - (4.35)
n>0
It comes
n—1 n
Te1Tok ) n u”
n>1 \k=0 n>1 \k=1
and thus
u n n unJrl
0 n>1 \k=1 :
n—2
n—2 unt
= TwTh—1— . 4.
n>3 \k=1
This completes the proof. ]

The differential equation (4.32) then translates into a separable ODE:

0T (u) = 1 + sT(u) + gz%). (4.39)
Thereafter, we easily deduce that
u= / _ (4.40)
0o 1+st+sh
Lemma 4.4. If s € (0,2) then
) tan <u\/s§2—s)>
T(u) = - x (4.41)

2

S 2%5 _ tan (u\/s(2—s)) ‘

If s € (2,00) then
T(u) = 2 V(s = eV (4.42)
5 s—14/s(s—2) —erVs(s—2)
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Proof of Lemma /.4. The proof consists in standard computations of the integral (4.40) noting

that the discriminant of the quadratic term is given by A = s(s — 2). O
Let us set
2 2—s .
arctan ( —) , if s € (0,2),
£ ) Ve ) 2 (4.43)

1 _ — :
prpmcy log (5 14+ +/s(s 2)) , if s € (2, 00).
In each of these two cases, one can see that u* is the smallest singularity of T(u), since the
other possible one is 7/4/5(2 — s) when s € (0,2).
Remark 4.4. The two formulas in (4.43) can be unified using the equality
1 -1z
14z

arctan z = %log < > , ze€C\{xi}. (4.44)

Lemma 4.5. For any s € (0,2) U (2,00) one has

2 1 2 1
T(u) ~ - and 0,%(u) ~ —-——— (4.45)

u—ut S U —u w5 (u* —u)?

Proof of Lemma 4.5. The proof follows from standard computations. O

To derive the asymptotics of T, we shall apply the transfer theorem as in the proof of
Proposition 2.4.

To this end, note that tan(z) is analytic on {z € C: —7/2 < Re(z) < 7/2}, as is r — tan(z)
for any r > 0. Set § = arctan(r) € (0,7/2). There exists a C-neighborhood V of € such that
tan induces a diffeomorphism from V onto its image, in such a way that for all z € V'\ {0}, one
has r — tan(z) # 0.

All of this shows that if s € (0,2), then T admits an analytic continuation in some pacman
domain of C, where the corner at the mouth coincides with the singularity w*.

Similar arguments also show that this remains true when s € (2, c0).

As a consequence, we obtain that for all s € (0,2) L (2, 00),

2 n!

(4.46)

Remark 4.5. When s = v 4y = 2, we obtain T(u) = 1%, which is consistent with (4.46),
since in that case, one can easily show that T,, = n! (as when x =y =1).

Besides, it is not entirely clear that T}, increases with s, as it should. However, one can show
that the function s — u* is extendable by continuity at s = 2 by setting u* = 1 when s = 2 and
verify that s — s x (u*)"*1 is increasing on (0,00) for all n > 1.

To find the MERWS, we need to compute the asymptotics of d(7,X,,)/d(2,X,,) for all finite
binary trees 7. Any limit point ¢(7) will produce an NNHF associated with a MERW according
to the definition of such random walks.

Let us introduce

Ur)=#07 and k(r)=#{icT:il¢Tori2 ¢}, (4.47)
respectively, the number of leaves and the number of incomplete internal nodes of 7. Note that
20(7) + K(7) = |7| + 1 = £(7) + |7| + 1. (4.48)

These equalities will be useful later.
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Lemma 4.6. For any n > k, we claim that

n—=k
d(T, Xn—l) = Z <7, i i . >7-'7;1+1 e EZ“"IT;} e ;;7 (449)
T Tyeos Uy J1y-- -5 )k
Jittn=n—k
where £ := (1), k := K(T), the indices i1,... 04, j1,-..,]Jx are non-negative integers, and we

define TF =T} for all j > 1, with Tj = 1.
In particular, we obtain
n—k

| s s + 1y (450

where [Z]F denotes the coefficient of Z in F, interpreted as a formal series as usual.

A7, Xp_1) = [

Proof of Lemma 4.6. To begin with, we make the following key observations:

e 7.1 counts the total weight of increasing continuations of size ¢ for a rooted binary tree
with only one element (since the root necessarily has the smallest label) and

Tijy = [H 0T (u). (4.51)

° Tj* counts the total weight of increasing continuations of size j for a rooted binary tree
with only one element and whose root has only one fixed child (the left or the right) and

T = [],] (T(u) +1). (4.52)

Remark 4.6. Note that Tyy1 = T = 1, in accordance with Definition 2.2: the weight of a
continuation of size zero is equal to one.

Therefore, to compute the weighted total number of paths from 7 to an arbitrary o O 7 of
size n (thus belonging to X,,_1), one can proceed as follows:

1. Choose the number of descendants ij,...,i, and ji,...,Jj. (excluding the nodes them-
selves) for each leaf vy, ..., v, and each incomplete internal node wy, ..., wy;

2. Distribute the n — k labels into k + ¢ groups of sizes i1,...,1%s,j1,...,Js associated with
the nodes vq,...,vp, w1, ..., Ws;

3. Sum over all possibilities the corresponding total weight of such increasing continuations,
which in any case is given by 15,1 -+ - Tj, 1 15, - 17 .

Based on this counting principle, we deduce (4.49), and equality (4.50) follows easily from
(4.51) and (4.52). This completes the proof of the lemma. O

Finally, by using (4.45), we obtain

(r)ts(r)
{0uT )} T (W) + 137~ <2> (u_lu)kﬂ (4.53)

S

Here we use that 2¢(7) + x(7) = k + 1.
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Applying again the transfer theorem as for (4.46), we deduce that

£(1)+k(T) k
2 n®  (n—k)!
d(T; Xn—l) n:OO <S> (u*)n+1 k! ) (454)
and thus e (e -1
d(T Xn 1) . 1 2 TITRT)=
B e () (4.55)

The proof of the expression of the PHF is then straightforward by using (4.47), as the above
equation yields the transition probabilities of the corresponding MERW.

It remains to show the asymptotics (4.27). To this end, we shall write the PHF (4.25) as the
expectation of a random PHF, as in the BST process.

We adopt the fragmentation measure approach to express the general NNHF (4.18) as

T(il)\ |T(z2)\
11V 4.56
n =11V HW1+M (456)

where, for the moment, the pairs (V; 1, V;2), with i € Sy, are arbitrary parameters belonging to
the 1-dimensional simplex {(¢,1 —¢):0 <t < 1}.

Note that the first product in the latter equality corresponds to the expression (4.8), which
holds in the unweighted case x =y = 1.

Now, choosing the family (V; 1, Vi 2)ics, to be i.i.d. and distributed as (4.28) over the simplex,
it follows that

@7 E2))

V|T 1,2 2 i (i1) (32)
E[qﬁ(T)]:lIE m = (x+y> HB T+ 1,170 +1) = (7). (4.57)

1ET lGT

Recall that the computation of the product involving the beta functions in the latter equality
has already been done (see equations (4.9) and (4.10)).

Since the sequence («;)ies,, which describes the NNHFs in (4.18), still represents the almost
sure asymptotic proportion of descendants of ¢ € Sy in 7, (as in Theorem 3.1), and since
a; ;= V;ja for any i € Sp and j € {1,2}, we obtain the result as in Corollary 4.2.

This completes the proof. O

Remark 4.7. There are endless possibilities for more general weighting schemes for trees, such
as, for example, the case when the weights depend on behaviour of the nodes at a fixed distance
from the main node. We can also consider a situation where the weight assigned to adding the
jth child of a node i depends on the presence of other children that have already been added. The
formulas become quite heavy, but no conceptual difference is present.

5 Infinite Combs and Agregation Processes

In this section, we show that BD can be very convenient for studying aggregation processes,
especially those related to growing tree structures, as in Section 3.

The first model we introduce is indeed an example of a tree growth process, whose skeleton
is an infinite comb. It turns out that the MERW is trivial, but this model is still rich.

It is related to random partitions (Bell numbers), and the combinatorial formula (7.5) pro-
duces, as an example, a well-known identity involving Stirling numbers (5.61).

Moreover, choosing a suitable random environment leads to the famous Chinese restaurant
process and allows us to retrieve well-known asymptotics.
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Finally, we discuss extensions of this model, some still related to tree growth processes,
others much more difficult to handle and investigate, laying the groundwork for the last section
on computer simulations.

5.1 Description of the Aggregation Model and its BD structure

We consider an aggregation process where individuals sequentially form groups according to
simple rules.

The first individual, say I, arrives and creates a group of size one, denoted by (1). When
the second individual arrives, they have two choices: 1) Join the existing group created by I,
forming a group of size two, denoted as (2). 2) Create a new group, resulting in two separate
groups of size one, denoted as (1,1). More generally, when the nth individual arrives, they can
either: 1) Join any of the existing groups, increasing its size. 2) Create a new group, leading to
a different partition of individuals.

This iterative process generates a sequence of group formations, where the structure depends
on the aggregation rules chosen. This type of dynamics can model the evolution of entities such
as political parties or consumer choices.

i) The BD structure. The nth level set of such process can be described by
Xp={(@1,..c,zp) k> 1 21,0 > 1, 2+ =n+ 1} (5.58)

Note that Xo = {(1)} and, more generally, the nth level consists of elements of size n + 1.
Then, denote by ¢(z) the integer k — the number of groups — appearing in the latter statement.
One has z ' y in the following two cases:

i) 4(xz) = L(y) and y; = x; + 1 for some 4, with y; = z; for all j # i;
ii) £(y) =L(x)+ 1, y; = x; for all 1 < j < L(z), and yp,,) = 1.

Similarly to the Young lattice, a state z € X can be visualized as a stack of boxes (unit
squares) with its bottom-left corner at coordinates (i,j) € N2. Paths within X are thus repre-
sented by connected diagrams, with an enumeration of the boxes.

i A

Figure 10: A path in X from the root to x = (3,2,2,1,5,2,1,2) of size 18,
with its corresponding tree structure.
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it) Underlying tree structure. This model is similar to a growing tree model (see Figure 10).
Indeed, let C be the infinite comb tree defined as C = {217 : i, j > 0}.

Here, 2¢17 (with 2 repeated i times and 1 repeated j times) represents a node in C. The root,
corresponding to ¢ = j = 0, is still denoted by {0} as in Section 3.

To each = € X,,, it corresponds a finite comb, which is a finite prefix tree, given by

T(r)={217:0<i<f(z)-1,0<j<az;—1}CC. (5.59)

Note that 7((1)) = {0} the tree with one element, the root. Reciprocally, to each finite prefix
tree T C C, there exists a unique z € X such that 7(z) = 7.

it) The Martin boundary. Based on this correspondence, we can apply Theorem 3.1 and we
deduce that the Martin boundary is given by

OX = {(Gk)k>1 €0,1N:) oy < 1} (5.60)

k>1

where the ) represent the asymptotic behavior of xy/n, where xy is the kth coordinate of an
element = € X, as n tends to infinity. Note also that 0y represents the asymptotic proportion
of boxes in the k-th tower in the diagram represented in Figure 10. Besides, the corresponding
boundary point («;);ec of the growing tree model is represented in Figure 11.

In addition, the corresponding extremal NNHFs are given by

909('1“17”' ’xk‘)zafl_l exk 1(1791 . 1729

Regarding the corresponding ergodic saturated central Markov chain, the probability to join
the k-th group, if it exists, is equal to 6y, and the probability to create a new one when n groups

already exist is equal to 1 — Z?Zl

0;.

Figure 11: The Martin Boundary associated with the comb-skeleton C.
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5.2 Uniform random partitions and the MERW

There exists a one-to-one correspondence between paths of length n starting from the root and
partitions of the set {1,---,n}. This correspondence is illustrated in Figure 12.

Figure 12: The partition corresponding to the path given in Figure 10.

As a consequence, the combinatorial dimension d(&,X,,_1) is equal to the Bell number B,.
Hence, the uniform distribution over the set of paths 7, denoted by m,, as in (2.18), corresponds
to the distribution of a uniform random partition of {1,--- ,n}.

This distribution has been extensively studied in the literature, for instance, in |28, 29].
Notably, it has been demonstrated that the asymptotic number of sets is of order n/In(n), each
set having approximately a cardinal equal to In(n).

We deduce the following result in the same manner as Proposition 2.5 for the Plancherel
growth process.

Proposition 5.1. The unique MERW associated with the agregation process in Section 5.1 is
the deterministic process corresponding to boundary point 8 = 0.

Remark 5.1. If the number of groups is limited by N, it is not difficult to see that the unique
MERW corresponds to 0, = 1/N for all1 < k < N and 6, =0 for all k > N.

Remark 5.2. Let S(n, k) be the Stirling number of the second kind, which represents the number
of ways to partition {1,--- ,n} into k subsets.

Then by setting 0; = X1 and using equation (3.10), we can derive and reinterpret the
well-known combinatorial identity:

n k—1
> S, k) (X —4) = X" (5.61)
k=1 j=1

5.3 The Kingman’s law and the Chinese restaurant process

Similarly to Section 4.2, consider a random point of the Martin boundary, given here by 6; = U;
and, for all n > 1,
Opt1 =Upi1(1 =01 —---—6,), (5.62)

where (Up)n>1 are i.i.d. beta random variables distributed as §(1,~). Note also that
Op, =Un(1 —Up—1)---(1=01).

It is well-known that the order statistics 61y > () > --- follow the so-called Kingman’s law
with parameter -y, corresponding to the Poisson-Dirichlet distribution PD(0,~). We refer to [30]
for more details.
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To derive the annealed NNHF @, similarly to that in (4.9), we can observe that (61, - ,6k)
has for density on (0,1)* the function

1 (1—81—---—816)771
S1,°+ ,8E) = — . 5.63
Thereafter, one can check that @ can be obtained by computing
1
k/ sth. sk "1 =51 — - —s3)7 sy - - - dsy. (5.64)
7 J(0,1)k

This integral is related to the Generalized Dirichlet distribution in [31]. We get

k
1
P21, o) = %Hﬁ(xiyxi-&-l +---+$k+’y).
1

Assuming that x1 + - -+ + xx = n, the transition probabilities of the corresponding central
Markov chain are given by

Ly

n+v’

p((z1, - yap); (v, + 1, o)) = (5.65)

and

(@1, zh): (@1, 78, 1)) = nzﬁy. (5.66)

This corresponds to the Chinese restaurant process, as detailed in [27, p. 92| and [30].

Again, and surprisingly, Theorem 7.1 and the above computation allow us to derive its
asymptotics in a simpler way, independently of the theory of exchangeable partitions.

Corollary 5.1. Let (Xi(n), X2(n), - )n>0 be the central Markov chain corresponding the the
Chinese restaurant process. Consider X1y(n) > X(9)(n) > -+ the order statistics.
Then, we have the following convergence in distribution as n tends to infinity:

(Xo®) s =2 PDO,7).

2l pooo

5.4 A simple extension

A natural extension of the model in Section 5.1 is to allow boxes to be placed to the left of an
existing box, while still maintaining the tree growth model structure. We refer to Figure 13 for
an illustration.

One can easily show that the Martin boundary in this case is given by

{O{,ﬁE[O,l] (Gk;)k;GZE 0 1 Zek<a 29 k<ﬁ,a+5+90—1} (5.67)

k=1 =

Here, 0 represents the asymptotic proportion of squares with their bottom-left corner at (k, j)
for some j. The parameters « (resp. ) represent the proportion of boxes with their bottom-left
corner at (4,7), where i > 1 (resp. i < —1).

Additionally, the corresponding extremal harmonic function is given by

p—1
Cl0.0,8)(T—p, 0,7+, 3g)) = 4P H o H (1 - > 11 <1 - 9;) . (5.68)

k=—p k=1
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Taking into account symmetry and Proposition 5.1, one can easily verify that the only MERW
is characterized by € = 0 and « = § = 1/2. It can be viewed as a simple symmetric random
walk on Z.

Figure 13: A path and its underlying tree structure.

5.5 Growing pyramidal diagrams

In order to obtain non-trivial MERWS, a particularly challenging problem is to incorporate
constraints on the shape within the aggregation model illustrated in Figure 13.

Consider the following variant: let h;, for ¢ € Z, denote the number of squares whose bottom-
left corners are located at (i, 7). In cases where hy, > 1, a box may be placed above, to the right,
or to the left of the kth tower, but this is subject to the restriction that the resulting configuration
does not produce a scenario where hy < min(hg—_1, hgy1).

In other words, only configurations that maintain a pyramidal shape are permitted. Figure
14 provides an example of such a configuration.

19

- Y----

15

16 | 12 | 13 | 18

10 | 7 5 | 14 | 17

11 | 2 3 4 6 8 9

Figure 14: An example of a path of pyramidal shapes.

It is important to note that the BD associated with this variant does not correspond to a
tree growth model (unfortunately).
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To assess the level of difficulty, consider a scenario where the bases of the pyramids are
restricted to a maximum size of three. Denote by [, ¢, and r the three possible choices for the
abscissa at each step.

This model, which seems much simpler than the previous one, is linked (in the sense of
Section 2.5) to the Kreweras’s random walk in the three-quarter plane.

This walk occurs on Z2\ {(4, ) : 4,7 < 0} with steps in {North-East; South; West}. We refer

to Figure 15 for an illustration.
7 A

16
— )
15

13 | 17
12 | 17
& @ A4 |

ot (=]
Q% w
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o~~~
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Figure 15: Correspondence between the Kreweras’s random walk and a paths
in the BD of pyramidal diagrams.

The enumeration of walks with small steps in cones has been a difficult combinatorial task,
often requiring powerful algebraic methods. The generating function for the total number of
walks originating from the origin is detailed in [32], yielding the asymptotic

3342 -2 1 gn (5.60)
r'(/8) nd/8 '
To find central Markov chains and thus MERWSs, we need to investigate the limit of the ratio

an(0,0) ~

anfk(ia .7)
o) (5.70)

as n — 0o, where a,, (7, j) represents the total number of walks of length m starting from (4, j).
Unfortunately, the generating functions in [32] focus on ¢, (i, 7), the number of walks of length
n starting from the origin and ending at (¢, j), which is not directly applicable here. Nonetheless,
it is reasonable to conjecture that a,(i,j) adheres to the same asymptotic as a,(0,0), modulo
a constant H; ;. Consequently, H can be identified as a unique positive harmonic function for
Kreweras’s random walk in the three-quarter plane, with Hyo = 1, as established by [33].
We make the following conjecture.

Conjecture 1. The unique MERW for the growing pyramidal model depicted in Figure 15 is
characterized by the following transition probabilities. Given (u,v,w) as a permissible configu-
ration derived from (x,y,z) by incrementing one of its coordinates by 1:

H’U—U’U—’LU
z,y,2); (u,v,w)) = —————, 5.71
P, 2); (v,w) = et (5.11)
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where H is the unique non-negative solution on Z? of H; ;=0 fori,j <0, Hyog =1 and for all
1 >0 07”j > 0, 3Hi,j = Hi*l,j + Hi,jfl =+ Hi,j-

6 Numerical Simulations

In general, explicitly computing MERWSs or central Markov chains is almost miraculous.
However, one might wonder whether efficient numerical simulations can be performed to
estimate the combinatorial dimension in (2.10) and approximate the transition probabilities.
Obviously, recursively counting the number of paths (focusing only on the unweighted case)
is generally unrealistic due to the exponential (or even worse) growth of such numbers.
This is why we advocate a Monte Carlo (MC) method.

6.1 The Algorithm

We employ the Knuth’s algorithm, as presented in [34], to enumerate the leaves of a tree through
MC simulations.

Several adaptations of the original Knuth algorithm have been proposed, all aiming to reduce
variance. For instance, we refer to [35,36] and [37].

Although a BD X is not necessarily a tree, the set R = | |,,~ 7 is. We recall that 7;, denotes
the set of finite paths of length n originating from the root, as introduced in Section 2.1.

A finite path t is a child of another path s if and only if ¢ can be obtained from s by adding
an additional transition at the end of s.

Thus, computing d(z,X,,) is equivalent to enumerating the number of leaves of the finite
subtree of paths of length d = n — n, starting from .

To this end, Knuth proposes to sample d-step trajectories s = sg-- - sq of a given RW — say
having ¢ for Markov kernel — starting from x, and to compute the mean of the cost function

c(s) = (q(s0,51) - - q(s4-1,54)) " (6.1)

This leads to Algorithm 1 written in pseudocode.

Algorithm 1 Approximation of a MERW Based on Knuth’s Algorithm

Initialize: Choose a probability kernel ¢(x,y) on X, a depth of exploration d, a sample size
N, and a path length n. Set Ty = @ and T; =ty - - - t; as the current path at time ¢ > 0.
for each step i, where ¢ < n, do
for each x such that t; " x do
Generate N trajectories s, .-, sV) of size d of the RW ¢ starting from z.
Calculate (see 6.1) the mean weight:

N
W(z) = %Z (s, (6.2)
k=1
end for
Draw a random neighbour y of ¢; with a probability proportional to W (y).
Set tiy1 =vy.
end for

return the trajectory tg---t,.
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6.2 Applications to Pyramidal Tableau

Here we consider the pyramidal growing model illustrated in Figure 14.

The initial approach is to utilize the generic random walk (GRW) in Algorithm 1. We denote
this method as (RW}). However, the challenge in applying Knuth’s algorithm effectively is to
identify a random walk (RW) for which the standard deviations of the estimates (6.2), expressed
as s/v/N, are not excessively large.

Table 1 provides the theoretical number of n-step trajectories originating from the root and
the corresponding Standard Deviations (StD) sg and s; for two methods: the initial one (RWp)
and another, more efficient method (RW7), which will be detailed further below.

Length n | Number of Paths StD (s1) StD (sp)
1 3 (0) (0)
2 11 (0) (1.418)
3 A7 (4.501) (11.42)
4 213 (3.615) (76.59)
5 1013 (23.64) (477.9)
6 5 047 (261.8) (2823)
7 26 077 (2 569) (17 020)
8 143 067 (21 120) (106 400)
9 809 973 (158 600) (596 700)
10 4758 653 (1 161 000) (3 759 000)
11 28 892 669 (8341 000) | (25 570 000)
12 180 970 405 (59 460 000) | (172 900 000)
13 1 166 654 573 (425 600 000) | (1 257 000 000)

Table 1: Number of paths originating from the root and standard deviations
of their Monte Carlo estimations for two different RW kernels.

i) The Random Walk (RW;). Given a pyramidal diagram A, we denote by K(A) the number
of boxes [J such that A ~ A U, representing the out-degree in the corresponding BD.
For instance, K(A) = 8 for the pyramidal Tableau in Figure 14. The transition kernel ¢

considered in Algorithm 1 takes the form:

_ K(A')Y
Y g K(AuD)r

q(A, A) (6.3)

We assume that A ' A’ and all the [J in the sum are available boxes of A. The parameter
~ may depend on the size n of A. In Table 1, we adjust v such that v = 2.5 when n = 1,
v =1 when n = d — 2, and v decreases linearly between these two steps, reaching v = 0 when
n = d — 1. These parameters have been consistently applied in all numerical simulations.
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Figure 16: Heat map of approximations of the MERW Pyramidal process.
Pyramid size: n = 500. Number of pyramid samples: Np = 500. Parameters
of Algorithm 1: N = 100, d = 30.

ii) Numerical Simulations and Congecture. To get Figure 16, we performed Np = 500 samples
of the MERW approximation with a pyramid size of n = 500.

The parameters used in Algorithm 1 were d = 30 for the depth and N = 100 for the number
of sample paths generated to obtain the estimation (6.2).

We then computed for each box (i, j) the number of times (and subsequently the proportion)
that the box appears in the final pyramid, and we drew the heatmap of these frequencies.

Regarding Figure 17, we simply drew one pyramid of size n = 500 with parameter d = 10
and sample size N = 100.

Figure 17: Pyramid size: n = 500. Depth: d = 10. Sample size N = 100.
In each of these graphics, we scaled the boxes by a factor 1/4/n in such a way that the area
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equals one. Additionally, we superposed on these figures the graph G, the limit shape we expect
for this stochastic process.

This is a symmetric version (with respect to the y-axis) of the classical limit shape of a
Young tableau under the Plancherel measure. See [38, p. 699] for more details. To be more
precise, introduce Q : [—1,1] — (0, 00) defined by

Qu) = 2 warcsin (u) + /1 — u2} . (6.4)

™

Let ‘H be the graph of Q and consider T : (u,v) (“‘5”, %) and S : (z,y) — (—z,y).
Then, one has G = T(H) U ST(H). In light of our simulations, and similarly to the Plancherel

growth process, we propose the following conjecture:

Conjecture 2. Let (P,)n>0 be the suitably scaled MERW Pyramidal process. The distance
between the boundary of P, and G tends to zero with probability one.

Acknowledgments: This work has been supported by the EIPHI Graduate school (contract "ANR-17-
EURE-0002") and by the Région "Bourgogne Franche-Comté"

7 Appendix

Our goal is to slightly extend and present the well-established results regarding central measures
on Weighted Bratteli Diagrams (WBDs), as stated in [11], in the setting of Section 2.1, where
countably infinite level sets are allowed.

Assumption 2.1 will be made throughout this section.

7.1 One-to-one Correspondences

A probability measure p on (7,.4) whose support is the whole BD is central if, for all y € X
and s,t € {@ — y}, it holds that u(Cs)w; = u(Cy)ws. We recall that {& — y} denotes the set
of paths starting from the root and ending at y, all of them being of length |y].

For such measure, the transition probabilities, defined for all n > 0, x € X,,, and y € X,,41

such that x 7y, by
#(Ctay)

1(Cta)

are independent of the choice of t € T,,_1 whenever txy € T,11.
This defines a Markov kernel on the BD, and the associated Markov chain (X,,)n>0, which

follows the distribution p when it starts from the root, is termed a central Markov chain.
Furthermore, the correspondence between central measures and Positive Harmonic Functions

(PHFs), that is a positive function on X satisfying (2.13), is established by setting

() = M) (7.2)

wum

p(z,y) == (7.1)

for any n > 0, x € X,,, and v € T_1.
Conditionally on the starting point x, the probability of any path s € {x — y} depends
solely on its weight and the endpoints x and y. It is given by

P(X, =y, - ,Xlellonse)ZwsM (7.3)

p(x)’

where n = n, — n, denotes the length of s and s = sg--- s, with 59 = x and s,, = y.
We slightly extend the definition of a central measure.
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Definition 7.1. A measure p on (T,.A) is a saturated central measure if its support
S={zeX:In>0,3ue Tn_1, u(Cyz) > 0}, (7.4)

is a Saturated Sub-Bratteli Diagram (SSBD) of X, in the sense of Definition 2.6, and if its
restriction to this BD is a usual central measure.

A random walk associated with a saturated central measure will be referred to as a saturated
central Markov chain.

Proposition 7.1. There exists a one-to-one correspondence between saturated central measures
and Non-Negative Harmonic Functions (NNHFs), as described in Definition 2.4.

Proof. Given an NNHF ¢, we get that S = {z € X : ¢(z) > 0} is an SSBD of X, as shown in
the proof of Proposition 2.1. The restriction of ¢ to this BD defines a PHF and thus a usual
central measure on S.

Conversely, let p be a saturated central measure on an SSBD S of X, and let ¢ : S —]0, oo
be the corresponding PHF. Then, if we extend ¢ to the whole BD X by setting ¢(z) = 0 for all
x € X\ S, we obtain an NNHF for which S = {z € X: p(z) > 0}.

One can easily check that these two maps are bijective and inverses of each other. O

Remark 7.1. Given a NNHF ¢ and n > 0, one has the general combinatorial identity
> d(@,y)e(y) = 1. (7.5)
yeXy,

We recall that the combinatorial dimension d(@,y) is defined in Section 2.1. It is simply the
weighted number of trajectories from & to y.

7.2 Martin boundary representation

For this section, we continue to follow [11] but also take inspiration from the Martin boundary
construction presented in [39].
First, introduce the Martin kernel, defined for all x, z € X by

K(x,z):= d(z, ) <Cp = d(@l, e

(7.6)

Thereafter, consider a summable family of positive numbers (¢,),ex and introduce the dis-
tance on X defined by

p(y Z) — ng |K(I13'7y) - K(x72)| + ‘(5.1’77; - 5:5,2” + |5'flac7ny — 5nm7nz‘ .

Cy+1 (7.7)

zeX

We recall that d, 5 is the usual Kronecker d-symbol, which equals 1 when a = b and 0 otherwise,
and n, € N denotes the level set number of the BD to which x belongs.

The completion of X with respect to the metric p will be denoted by X, and the completion
of each X,, by X,,. The d-terms in (7.7) ensure that if a sequence (yy,)n>0 in X converges to some
y € X,,, then it is either ultimately constant with y € X,,, or ultimately belongs to the nth level
set with y ¢ X,.

From the upper bounds in (7.6), we easily deduce that X is a compact set. Moreover, it can
be observed that | |, X, is an open subset of X. Consequently, the boundary of the BD,

X =X\ | | Xa, (7.8)

neN
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is a non-empty compact set.
An infinite path ¢ € T is regular if it converges to a point { € 0X. In such cases, we define

d(x,tn
oc(z) = lim K(z,t,) = lim (2, tn)

n—00 n—o00 d(@,tn).

(7.9)

It follows that ¢(@) = 1 and the function ¢ — ¢¢(z) is continuous. Sometimes, for greater
clarity, the function ¢, is also denoted as K (-, ().

Furthermore, applying the dominated convergence theorem with the help of Assumption 2.1
and the upper bound (7.6), we deduce from

K(z,2) = Y w(z,y)K(y, 2) + Cala,z, (7.10)
z,y

that ¢ is an NNHF. We shall denote by p¢ the corresponding saturated central probability
measure, as given by Proposition 7.1.

Let 7™ be the set of infinite paths starting from the level set Xj, and define the random
variables Oy : T — T*) by ©4(t) = (tn)n>k. Denote by G, the decreasing o-field generated by
O, k > n, and by Gy the tail o-field (),,~ Gn-

Definition 7.2. A saturated central probability measure p on (T,.A) is ergodic if for every
A € G one has u(A) € {0,1}.

Theorem 7.1. The ergodic saturated central measures are precisely the pc, ¢ € 0X, defined
above. These measures are the extremal points of the convex set of saturated central probabil-
ity measures, and each saturated central probability measure can be represented as the Choquet
integral

p= [ wemidc) (7.11)
oX
where m is a probability distribution on 0X. Correspondingly, the associated NNHF is given by

o(z) = /ax ¢ (x) m(dg). (7.12)

Let (Xp)n>0 be the saturated central Markov chain associated with m. Denote by S its support
and by P, the distribution starting from x € S. Then, for all x €S,

lm X, =2 Poas, with Z~ 2% m0). (7.13)
n—oo gp(z)

Proof. Let u be an arbitrary saturated central probability measure.
For all k >0, s € Tr.—1, and = € X, such that sx € T, it can be checked that for all ¢t € T

and n > k,
d(z,ty)

Csz|Gn)(t) = wsy . 7.14

H(CaalGn)(6) = s (714)
Applying the backward martingale convergence theorem, we get for py-almost all ¢t € T,

CanlGoo) (1) = Wiy 1 . 7.15

#(CszlGoo) () = wir lim Z2= 5 (7.15)

We obtain that p-almost all trajectories t € T are regular, as defined in (7.9).
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Thus, one can introduce a Goo-measurable random variable Z : 7 — 0X corresponding to
the limit point of each trajectory. Since for any { € 0X one can write

. . . d(x, tn)
:U’C(CSQJ) - wsx(pg(‘r) = Wsz n11~>11;>lo d(@, tn) ’ (716)
we deduce that
(CszlGo0) (t) = NZ(t)(Csx) p(dt)-a.s.. (7.17)

As a direct consequence, we obtain the representation (7.11), in which m represents the
distribution of the exit point Z in the Martin boundary when the corresponding saturated
central Markov chain starts from the root.

We also directly obtain (7.13) when 2 = &, and the result for arbitrary  can be deduced
simply by standard conditional computation.

If p is ergodic, we obtain that Z is constant p-almost surely, and thus there exists ( € 0X
such that p = pe. Conversely, if 1 is not ergodic, there exists A € G such that p(A) and p(A°)
are both positive. Then, consider

u(-14) =

1 / 1
i [ rzoOutan and w(1a9) = S [z Cntar). (7.18)
u(A) Ja o7 pl(Ae) Jae

These are two saturated central probability measures for which the corresponding exit points
belong respectively to A and A° with probability one.

Therefore, these distributions are mutually singular, indicating that Z is not u-almost surely
constant. This completes the proof. O
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