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Abstract We consider a walker on the line that at each step keeps the same direction with a probability
which depends on the time already spent in the direction the walker is currently moving. These walks
with memories of variable length can be seen as generalizations of Directionally Reinforced Random
Walks (DRRWs) introduced in [1, Mauldin & al., Adv. Math., 1996]. We give a complete and usable
characterization of the recurrence or transience in terms of the probabilities to switch the direction and
we formulate some law of large numbers. The most fruitful situation emerges when the running times
have both an infinite mean. In that case, these properties are related to the behaviour of some embedded
random walk with an undefined drift so that these features depend on the asymptotics of the distribution
tails related to the persistence times. In the other case, the criterion reduces to a null-drift condition. Fi-
nally, we deduce some criteria for a wider class of Persistent Random Walks (PRWs) whose increments
are encoded by a Variable Length Markov Chain (VLMC) having – in full generality – no renewal pat-
tern in such way that their study do not reduce to a skeleton RW as for the original model.
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Introduction

Classical random walks are usually defined from a sequence of independent and identically distributed
(i.i.d.) increments tXkukě1 by

S0 :“ 0 and Sn :“
n
ÿ

k“1

Xk for all integers ně 1. (1.1)

When the jumps are defined as a finite-order Markov chain, a short memory in the dynamics of
the stochastic paths is introduced and the random walk tSnuně0 itself is no longer Markovian. Such a
process is called in the literature a PRW, a Goldstein-Kac random walk or also a correlated random walk.
Concerning the genesis of the theory, we allude to [2–7] as regards the discrete-time situation but also
its connections with the continuous-time telegraph process and we refer to [8, 9] concerning recurrence
and transience features.

In this paper, we aim at investigating the asymptotic behaviour of one-dimensional PRW for which
the increments are driven by a VLMC (an infinite-order Markov chain) built from a probabilized context
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tree. This construction furnishes an extented model for the dependence of the increments of PRWs
which can be easily adapted to various situations. The slight presentation of VLMCs below – that fits
our model – comes from [10] and we refer to [11, pp. 117-134] and [12] for an overview.

Let L “A ´N be the set of left-infinite words on the alphabet A :“ td,uu and consider a complete
tree on this alphabet, i.e. such that each node has 0 or 2 children, whose leaves C are words (possibly
infinite) on A . To each leaf c P C , called a context, is attached a probability distribution qc on A .
Endowed with this probabilistic structure, such a tree is named a probabilized context tree. The related
VLMC tUnuně0 is defined as the Markov Chain on L whose transitions are given by

PpUn`1 “Un`|Unq “ qÐÝpref pUnqp`q, (1.2)

where
ÐÝ
pref pwq P C is defined as the shortest prefix of w “ ¨¨ ¨w´1w0, read from the right to the left,

appearing as a leaf of the context tree. The kth increment Xk of the corresponding PRW is given as the
rightmost letter of Uk, with the one-to-one correspondence d“´1 (for a descent) and u“ 1 (for a rise).

Different probabilized context trees lead to different probabilistic impacts on the asymptotic be-
haviour of the resulting PRWs. Besides, the characterization of the recurrent versus transient behaviour,
the so called type problem, is difficult for a general probabilized context tree. Here, we state exhaustive
and handy criteria – in terms of the distribution tails of the persistent times – together with some law
of large numbers for PRWs defined from a double-infinite comb introduced in [13]. Roughtly speaking,
the leaves – coding for the memory – are the words on td,uu » t´1,1u of the form dnu and und. Hence,
the probability to invert the current direction depends only on its length. In addition, we derive sufficient
conditions for the type of PRWs built from a larger class of context trees obtained as grafts of the original
double-infinite comb model.

Closely related to our model, DRRWs are nearest neighbour random walks keeping their directions
during random times τ , independently and identically drawn after every change of directions, themselves
chosen independently and uniformly among the other ones. In dimension one, the double-infinite comb
model can be seen as a generalisation since it allows running times τu (up) and τd (down) with distinct
distributions. Due to their symmetry, the recurrence criterion of DRRWs in dimension one takes the
simple form given in [1, Theorem 3.1., p. 244] and obviously we retrieve this particular result in our
more general situation (see Proposition 3.1 and Theorem 3.1). It is stated in [1, Theorem 3.3. and
Theorem 3.4., p. 245] that these random walks are recurrent in Z2 when the waiting time between
changes of direction is square integrable, and transient in Z3 when it is only supposed to be integrable.
In higher dimension, it is shown that it is always transient. In dimension three the corresponding result
has been recently improved in [14, Theorem 2., p. 682] by removing the integrability condition. Also, the
assertion in [1] that the DRRW is transient when its embedded random walk of successive locations of
change into the first direction is transient has been partially invalided in [14, Theorem 4., p. 684]. Thus,
even in the symmetric situation, the characterization of recurrence or transience is a difficult task. The
case of anisotropic PRWs built from VLMCs in higher dimension is a work in progress and this paper is
somehow a first step, as the study of their scaling limits which will be presented in a forthcoming paper.

In Section 2, we briefly recall the double-infinite comb model of PRW and we introduce the major
quantities and notations required in the sequel. The renewal property stated in [13] implies for the
PRW infinitely many U-turns, cutting its paths into independent pieces. As a result, one may define the
walk more directly and forget the underlying VLMC structure since the even (and odd) breaking times
together with the position of the walk at these instants form two coupled classical RWs. However, in the
last section, we get some criteria for a broader class of PRWs without renewal assumption and therefore
motivating the use of VLMCs to model the dependance of the past. The penultimate section 3 is devoted
to the recurrence or transience of the double-infinite comb PRW. Its main result – Theorem 3.1 – can be
viewed as the continuation of Erickson’s theorem in [15, 1974]. Besides, some extensions of the Strong
Law of the Large Number (SLLN) shown in [13] are also given.
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Settings and assumptions
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Figure 2.1: Persistent random walk

Foremost, we refer carefully to Figure 2.1 that illustrates our notations and assumptions by a re-
alization of S, the so called double-infinite comb PRW. This PRW is characterized by the transition
probabilities

α
d
k :“ PpXk`1 “ u|X0 “ u,X1 “ d, ¨ ¨ ¨ ,Xk “ dq

and α
u
k :“ PpXk`1 “ d|X0 “ d,X1 “ u, ¨ ¨ ¨ ,Xk “ uq, (2.1)

where Xk denotes the kth jump of S in td,uu » t´1,1u given as the rightmost letter of the left-infinite
word Uk – the kth term of underlying double-infinite comb VLMC defined in [13]. Note that the latter
conditional probabilities are invariant by shifting the sequence of increments and thus αu

k and αd
k stand

respectively for the probabilities of changing direction after k rises and k descents.
Furthermore, in order to avoid trivial cases, we assume that S can not be frozen in one of the two

directions with a positive probability – it makes infinitely many U-turns almost surely. Besides, without
loss of generality, we deal throughout this paper with the conditional probability with respect to the
event pX0,X1q “ pu,dq – the initial time is suppose to be an up-to-down turn. Therefore, we assume the
following.

Assumption 2.1 (finiteness of the length of runs). For any ` P tu,du,
8
ź

k“1

p1´α
`
kq “ 0 ðñ

˜

Dk ě 1 s.t. α
`
k “ 1 or

8
ÿ

k“1

α
`
k “8

¸

. (2.2)

Let τun and τdn be respectively the length of the nth rise and of the nth descent (also called persis-
tence times). Then, by the renewal property of the underlying VLMC, tτdn u and tτun u are independent
sequences of i.i.d. random variables. Their distribution tails are given for any ` P tu,du and ně 1 by

T`pnq :“ Ppτ`
1 ě nq “

n´1
ź

k“1

p1´α
`
kq. (2.3)

At this stage, we exclude the situation of almost surely constant length of runs which trivializes the
analysis. In order to deal with a more tractable random walk built with possibly unbounded but i.i.d.
increments, we introduce the underlying skeleton random walk tMnuně0 associated with the even U-
turns – the original walk observed at the random times of up-to-down turns. Note that the expectation
dM of an increment Yk :“ τuk ´ τdk is meaningful whenever one of the persistence times is integrable. In
this situation, we can set (extended by continuity whenever necessary)

dS :“
Erτu1 s´Erτd1 s
Erτu1 s`Erτd1 s

P r´1,1s. (2.4)

In regards to the convergence (3.1) below, the latter quantity is naturally termed the almost sure drift of
the double-infinite comb PRW.
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Recurrence and transience

As stated by [16, Theorem 1., Chap. XII and Theorem 4., Chap. VI], any non-constant one-dimensional
random walk is either, with probability one, oscillating – t´8,8u are both limit points – or drifting to-
ward˘8. Moreover, whenever its increments satisfy some SLLN, these cases are characterized through
the associated almost sure drift. In fact, the recurrence versus transience behaviour of the double-infinite
comb PRW reduces to the oscillating versus drifting behaviour of its skeleton random walk.

Lemma 3.1 (equivalent characterization). The double-infinite comb PRW S is either recurrent or tran-
sient according to its skeleton M is oscillating or drifting.

Proof. Obviously, if M is oscillating, then S is recurrent. Next, if M is drifting to´8, then S is transient
to ´8 since the trajectory of S is always under the broken line formed by the Mn’s. Finally, noting that,
up to an independent random variable, the skeleton random walk at odd breaking times (down-to-up
breaking times) is equal in distribution to M, this ends the proof of the lemma.

Lemma 3.2 (comparison lemma). Let S and rS be two double-infinite comb PRWs such that the distri-
bution tails of their runs satisfy Tu ď

ĂTu and Td ě
ĂTd. Then there exists a coupling – still denoted by

pS, rSq – such that Sď rS a.s..

Proof. Let G` and rG` be the left-continuous inverses of the cumulative distribution functions of the
persistence times and introduce two independent sequences tV `

n u of uniform random variables on r0,1s.
Since double-infinite comb PRWs are entirely determined by the lengths of runs, a coupling can be
constructed by considering the sequences of running times given by τ`

n :“G`pV `
n q and rτ`

n :“ rG`pV `
n q.

First assume dS given in (2.4) is well-defined. In this case, a SLLN for the double-infinite comb
PRW can be stated and the recurrence is characterized by a null-drift condition similarly to the classical
context of random walks with integrable jumps.

Proposition 3.1 (well-defined drift case). The double-infinite comb PRW S is recurrent if and only if
dS “ 0 and transient otherwise. Furthermore, one has

lim
nÑ8

Sn

n
“ dS a.s.. (3.1)

Proof. Remark that the recurrence criterion is a straightforward consequence of [16, Theorem 1., Chap.
XII and Theorem 4., Chap. VI] and Lemma 3.1 above. Besides, the law of large numbers (3.1) when
Erτu1 s and Erτd1 s are both finite is already proved in [13, Proposition 4.5, p. 33]. Then (by symmetry) it
only remains to prove the SLLN when Erτu1 s “ 8 and Erτd1 s ă 8 – the limit dS being then equal to 1.
Note that it is sufficient to prove the underestimate in (3.1). Let N ě 1 and set

α
u,N
n :“

"

αu
n , when 1ď nď N´1,

1, when ně N,
and α

d,N
n :“ α

d
n . (3.2)

This defines a double-infinite comb PRW, denoted by SrNs, satisfying dSrNs ě 1´ε as soon as N :“ Npεq
is chosen sufficiently large for any ε P p0,1q. Then Lemma 3.2 gives a coupling such that SrNs ď S a.s.
and we deduce the result.

We consider the remaining case in which both Erτu1 s and Erτd1 s are infinite. Following Erickson [15,
Theorem 2., p. 372], the oscillating or drifting behaviour of the skeleton random walk M is character-
ized through the cumulative distribution function of its increments Yk “ τuk ´ τdk . However, Erickson’s
criterion does not suit to our context – without ad hoc regularity assumptions on the distributions – since
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the law of a jump is not explicitly given by the parameters of the model, but rather by the convolution of
two a priori known distributions. More precisely, this criterion requires to settle whether the quantities

J` :“
8
ÿ

n“1

nPpY1 “ nq
řn

k“1PpY1 ď´kq
and J´ :“

8
ÿ

n“1

nPpY1 “´nq
řn

k“1PpY1 ě kq
, (3.3)

are finite or infinite, which is not convenient in concrete cases. To circumvent these difficulties, we
consider a sequence tξnu of i.i.d. symmetric Bernoulli random variables, independent of the length of
runs, and we set for any ně 0,

Mrξs

n :“
n
ÿ

k“1

Y rξsk , with Y rξsk :“ ξkτ
u
k ´p1´ξkqτ

d
k . (3.4)

The proof of the following Lemma is postponed to the end of this section.

Lemma 3.3 (randomized random walk). The random walks M and Mrξs are simultaneously oscillating
or drifting.

Therefore, applying the criteria of Erickson to Mrξs, it is not difficult to see that it consists of studying
the convergence of the more tractable series

J`1|`2 :“
8
ÿ

n“1

nPpτ`1 “ nq
řn

k“1Ppτ`2 ě kq
“

8
ÿ

n“1

np´∆T`1pnqq
řn

k“1 T`2pkq
, (3.5)

for any `1 ‰ `2 P tu,du, where ∆V pnq :“V pn`1q´V pnq. Again, the proof of our main result below is
postponed to the end of this part.

Theorem 3.1 (undefined drift case). The double-infinite comb PRW S is recurrent if and only if Ju|d and
Jd|u are both infinite. Otherwise, it is transient to 8 (resp. ´8) if and only if only Ju|d (resp. Jd|u) is
finite. In any case, when Ju|d “8 (resp. Jd|u “8),

limsup
nÑ8

Sn

n
“ 1 a.s.

ˆ

resp. liminf
nÑ8

Sn

n
“´1 a.s.

˙

. (3.6)

The case of finite characteristics Ju|d and Jd|u does not appear in this theorem because then it follows
from [15] that the persistence times are both integrable. Hence, this case reduces to the well-defined
drift case in Proposition 3.1. Besides, this theorem can be reformulated in terms of alternative quantities
involving only the distribution tails of the running times, making the criterion more transparent.

Corollary 3.1 (alternative formulation). Theorem 3.1 can be stated in terms of the characteristics K`1|`2

in place of J`1|`2 with

K`1|`2 :“
8
ÿ

n“1

ˆ

1´
nT`2pnq

řn
k“1 T`2pkq

˙

T`1pnq
řn

k“1 T`2pkq
. (3.7)

Proof. By symmetry, we only need to prove that Ju|d “8 if and only if Ku|d “8. Summing by parts –
the so called Abel transformation – we can write for any r ě 1,

r
ÿ

n“1

np´∆Tupnqq
řn

k“1 Tdpkq
“

«

1´
pr`1qTupr`1q
řr`1

k“1 Tdpkq

ff

`

r
ÿ

n“1

∆
ˆ

n
řn

k“1 Tdpkq

˙

Tupn`1q.

Besides, a simple computation gives

∆
ˆ

n
řn

k“1 Tdpkq

˙

“

řn
k“1 Tdpkq´nTdpn`1q

řn`1
k“1 Tdpkq

řn
k“1 Tdpkq

“
Erτd1τd1ďns

řn`1
k“1 Tdpkq

řn
k“1 Tdpkq

ě 0. (3.8)
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It follows that

r
ÿ

n“1

np´∆Tupnqq
řn

k“1 Tdpkq
“

«

1´
pr`1qTupr`1q
řr`1

k“1 Tdpkq

ff

`

r
ÿ

n“1

ˆ

1´
nTdpn`1q
řn

k“1 Tdpkq

˙

Tupn`1q
řn`1

k“1 Tdpkq
. (3.9)

Due to (3.8) and the non-integrability of the persistence times, the general term of the series in the
right-hand side of the latter equation is non-negative and (up to a shift) equivalent to that of Ku|d. As a
consequence, if Ju|d is infinite, then so is Ku|d. Moreover, we get again from (3.8) that

rTuprq
řr

k“1 Tdpkq
“

8
ÿ

m“r`1

rp´∆Tupmqq
řr

k“1 Tdpkq
ď

8
ÿ

m“r`1

mp´∆Tupmqq
řm

k“1 Tdpkq
. (3.10)

Therefore, the finiteness of Ju|d and (3.10) imply the first term on the right-hand side in (3.9) is bounded
and thus the finiteness of Ku|d. This ends the proof of the corollary.

Theorem 3.1. First, the statement related to the recurrence and the transience are direct consequences of
Erickson’s criteria [15] and of Lemma 3.3. Then, assume that Ju|d “8. Note that the left-hand side of
(3.6) is satisfied if, for all cą 0,

P

˜

τ
u
n ě c

n
ÿ

k“1

τ
d
k i.o.

¸

“ 1. (3.11)

By using the Kolmogorov’s zero-one law, we only need to prove that this probability is not zero. To this
end, remark [17, Theorem 5., p. 1190] applies to Mrξs so that

limsup
nÑ8

pY rξsn q`

řn
k“1pY

rξs

n q´
“ limsup

nÑ8

ξnτun
řn

k“1p1´ξkqτ
d
k
“8 a.s.. (3.12)

Roughly speaking, this theorem states that the position of a one-dimensional random walk with an un-
defined mean is essentially given by the last big jump. Introducing the counting process Nn :“ cardt1ď
k ď n : ξk “ 0u, we shall prove that

#

n
ÿ

k“1

p1´ξkqτ
d
k

+

ně1

L
“

#

Nn
ÿ

k“1

τ
d
k

+

ně1

. (3.13)

We will check that tp1´ξnqτ
d
n u and tp1´ξnqτ

d
Nn
u are sequences of independent random variables with

marginals equal in distribution. First note that for any ně 1,

Ppp1´ξnqτ
d
Nn
“ 0q “ Ppξ1 “ 1q “ Ppp1´ξnqτ

d
n “ 0q. (3.14)

Moreover, up to a null set, we have tξn “ 0u “ tNn “ Nn´1`1u and Nn´1 is independent of ξn and of
the lengths of runs. We deduce that for any k ě 1,

Ppp1´ξnqτ
d
Nn
“ kq “ Ppξ1 “ 0,τd1 “ kq “ Ppp1´ξnqτ

d
n “ kq. (3.15)

Hence, the increments of the random walks in (3.13) are identically distributed and it only remains
to prove the independence. Fix n ě 1 and set for any k1, ¨ ¨ ¨ ,kn ě 0, In :“ t1 ď j ď n : k j ‰ 0u and
mn :“ cardpInq. Remark that ` ÞÝÑ m` is increasing on In and up to a null set,

č

`RIn

tξ` “ 1uX
č

`PIn

tξ` “ 0u Ă tNn “ mnu. (3.16)
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Then using (3.14) and (3.15) together with the independence properties we get

P

˜

n
č

j“1

tp1´ξ jqτ
d
N j
“ k ju

¸

“ P

˜

č

`RIn

tξ` “ 1uX
č

`PIn

tξ` “ 0,τdm`
“ k`u

¸

“

n
ź

j“1

Ppp1´ξ jqτ
d
N j
“ k jq,

which ends the proof of (3.13). Furthermore, by the SLLN, we obtain that for any integer q ě 2, with
probability one, the events tNn ě tn{quu hold for all n sufficiently large. Therefore, we deduce from
(3.13) and (3.12) that

$

&

%

τ
u
n ě c

tn{qu
ÿ

k“1

τ
d
k i.o.

,

.

-

and thus

#

q´1
ď

`“0

#

τ
u
qn`` ě c

n
ÿ

k“1

τ
d
k

+

i.o.

+

,

are events of probability one. Again, applying the Kolmogorov’s zero-one law, we get that the q se-
quences of events (having the same distribution) in the latter equation occur infinitely often. This
achieves the proof of (3.11) and – by symmetry – of (3.6). This completes the proof of the theorem.

Remark 3.1. The reccurence and transience criteria in Theroren 3.1 relies on the probabilistic proof
of Lemma 3.3 presented below. However, one can wonder whether a more analytic proof is feasible in
order to replace the characteristics (3.3) deduced from [15] by those given in (3.5). Unfortunately, we
have been unable to find such a proof except under the regularity assumption

sup
"

maxtPpτ`
1 “ kq : k ě nu

Ppτ`
1 “ nq

: ně 1, ` P tu,du
*

ă8. (3.17)

Lemma 3.3. We deeply exploit the structure of one-dimensional random walks stating that they are
either oscillating or drifting to ˘8. Assume that the supremum limit of Mrξs is a.s. infinite. Then,
following exactly the same lines as in the proof of (3.11) we obtain that the supremum limit of M is also
a.s. infinite. Thereafter, by symmetry and the structure theorem, we only need to prove that if Mrξs is
drifting to8, then so is M. Furthermore, since the i.i.d. Bernoulli random variables tξnu are symmetric
– that is p“ 1{2 – it is a simple consequence of the equalities

Mrξs L
“Mr1´ξs and M “Mrξs`Mr1´ξs. (3.18)

Here 1´ ξ :“ t1´ ξnu is the complementary sequence of i.i.d. symmetric Bernoulli random variables
of ξ “ tξnu.

Remark 3.2. Lemma 3.3 still holds when tξnu is supposed to be an i.i.d. sequence of Bernoulli random
variables of parameter p P p0,1q. The proof is based on the case p “ 1{2 and on the arguments in the
proof of (3.6).

Remark 3.3. Contrary to the well-defined drift case, here double-infinite comb PRWs may stay recurrent
when the α`

k ’s are slightly perturbed. To put it in a nutshell, the criterion is global in the former case
and asymptotic in the latter case.

On arbitrary PRWs

Consider a double-infinite comb and attach to each finite leaf c another context tree Tc (possibly trivial)
as in Figure 4.2. The leaves of the related graft are denoted by Cc and this one is endowed with Bernoulli
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distributions tql : l P Ccu on tu,du. Note that any probabilized context tree on tu,du can be constructed
in this way. We denote by Sg the corresponding PRW. In this case, the random walk is particularly
persistent in the sense that the rises and descents are no longer independent. A renewal property may
still hold but it is more tedious to express in general. Let S and S be the double-infinite comb PRWs with
respective transition

α
u
n :“ suptqcpdq : c P Cundu, α

d
n “ inftqcpuq : c P Cdnuu,

and α
u
n :“ inftqcpdq : c P Cundu, α

d
n :“ suptqcpuq : c P Cdnuu. (4.1)

Proposition 4.1. Assume that S and S have persistent times of infinite mean in such a way that they are
simultaneously recurrent or transient. Then, Sg is of the same type.

For instance, when the (non-trivial) grafts are some finite trees in finite number such that the at-
tached Bernoulli distributions are non-degenerated and induce non-integrable running times, recurrence
or transience criteria reduce to the study of some double-infinite comb PRW.

This proposition is a straightforward consequence of Lemma 4.1 and Lemma 4.2 below which are
of independent interest. Lemma 4.1 gives sufficient condition for the recurrence or the transience of
an arbitrary PRW. Its proof involves a coupling argument similar to the one appearing in the proof of
Lemma 3.2 and is therefore omitted. Lemma 4.2, on the other hand, implements the Remark 3.3 above.

Lemma 4.1 (comparison of grafts). With probability one, one has

limsup
nÑ8

Sn “8 ùñ limsup
nÑ8

Sgn “8 and liminf
nÑ8

Sn “´8 ùñ liminf
nÑ8

Sg
n “´8.

As a consequence, if S and S are of the same recurrent or transient type, then S is recurrent or
transient accordingly.

Lemma 4.2 (asymptotic comparison). Let S and rS be two double-infinite comb PRWs with non-integrable
running times. If their exists cě 1 such that their distribution tails satisfy, for n large enough,

Tupnq ď cĂTupnq and Tdpnq ě c´1
ĂTdpnq, (4.2)

then
limsup

nÑ8
Sn “8 a.s. ùñ limsup

nÑ8
rSn “8 a.s.. (4.3)

Proof. Let N ě 1 be such that cĂTupNq ď 1 together with (4.2) for all ně N. Then

xTupnq :“
"

cĂTupnq, if ně N,
1, if nă N,

and xTdpnq :“
"

c´1
ĂTdpnq, if ně N,

Tdpnq, if nă N,

d

u

Td1u

d

u

Td2u

u

d

Tu1d

u

d

Tu2d

Figure 4.2: Grafting of the double-infinite comb

8



are distribution tails of some runs associated with a double-comb PRW pS. Due to Lemma 3.2, there
exists a coupling such that S ď pS and it follows from Theorem 3.1 that (4.3) holds with pS in place of rS.
Therefore, it suffices to show that the hat and tilde Ku|d-characteristics in (3.7) are simultaneously finite
or infinite. First note that

xTupnq
´

řn
k“1

xTdpkq
¯2 „

nÑ8
c3

ĂTupnq
´

řn
k“1

ĂTdpkq
¯2 ,

since the hat and the tilde distribution tails only differ for finitely many n and because the denominators
in the latter equation tends to infinity by hypothesis. Besides,

˜

n
ÿ

k“1

xTdpkq

¸

´nxTdpnq „
nÑ8

c´1

«˜

n
ÿ

k“1

ĂTdpkq

¸

´nĂTdpnq

ff

by noting that these quantities are nothing but the truncated means of the lengths of runs and thus go to
infinity (always by assumption). Consequently, the proof follows from the two latter equations and the
expression given in (3.7).

Acknowledgement. The authors wish to thank the referee for his valuable advices and suggestions –
especially Remark 3.1 – improving the readability of the exposition and enriching its contents.
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