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Abstract In this paper, we aim at giving a complete and unified description of the functional scaling limits
associated with some Persistent Random Walks (PRW) for which the recurrence features are studied in [1]. As
a result, we highlight a phase transition phenomenon with respect to the memory: depending on the decreasing
rate of the tail distribution of the persistence times, the resulting limit process is Markovian or non-Markovian.
A relevant generalized drift, appearing as a mean drift in full generality, is introduced to unify [the stability
assumptions and] these two regimes. In the memoryless situation, the limits are classical strictly stable Lévy
processes of infinite variations. Let us point out that the description of the critical Cauchy case, as well as the
non-symmetric situation, fills some lacuna of the litterature. More specifically, for the closely related context of
Directionally Reinforced Random Walks (DRRW5s) in [2, 3], those cases have not been considered. Furthermore,
the limit processes keeping some memory has been introduced in [4] as scaling limits of some Lévy Walks. We
extend their results to our model but also to a wider class of PRWs without renewal patterns. Besides, we compute
explicitly the marginal densities. To this end, we make the connection with the occupation times of some stochastic
processes modelled on those defined in [S5] and [included ??7?] skew Bessel processes. Finally, we clarify some
misunderstanding regarding the latter marginal distributions in the framework of DRRWs and LWs.
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1 Introduction

This paper is a continuation of [1], in which recurrence versus transience features of some Persistent
Random Walks (PRWs) are described. More specifically, we still consider a walker {S,},>0 on Z,
whose jumps are of unit size, and such that at each step, it keeps the same direction (or switches) with a
probability directly depending on the time already spent in the direction the walker is currently moving.
Here, we aim at investigating functional scaling limits of the form
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for which some functional convergence in distribution toward a stochastic process Z holds. The con-
tinuous time stochastic process {S;};>0 above denotes the piecewise linear interpolation of the discrete
time one {S,},>0. Due to the sizes of its jumps, the [latter???] is obviously ballistic or sub-ballistic.
In particular, the drift parameter mg belongs to [—1, 1] and the growth rate of the normalizing positive
function A (u) is at most linear. In full generality, we aim at investigating a PRW given by

n
So=0 and S,,:zZXk, foralln> 1, (1.2)
k=1

where a two-sided process of jumps {X} },cz in an additive group G is considered. In order to take into
account possibly infinite reinforcements, the increment process is supposed to have a finite but possibly
unbounded variable memory. More precisely, we assume that it is built from a Variable Length Markov
Chain (VLMC) induced by some probabilized context tree. This construction furnishes extended models
for the dependence of the increments which can be easily adapted to various situations.

Regarding the toy model roughly introduced above, the set of leaves € of the associated context
tree, coding the memory, is nothing but the set of words {d"u, u"d : n > 1} with the correspondence
d = —1 (for a descent) and u = 1 (for a rise). The associated two-sided process of jumps has a finite
but possibly unbounded variable memory whose successive lengths are given by the so called age time
process defined for all n > 0 by

=inflk=>1:X, - X,_x €€} (1.3)
In particular, the PRW is completely characterized by the transition probabilities
of :=P(Xyr1 = u|Xy Xy = d'0) =P (Xpy =u|X, =d, A, = k), (L.4)
and
o == P(Xpp1 = d|X, - Xy = u'd) = P(X,1 = d|X, =u,A, = k). (1.5)

It is worth noting that the dynamics can equivalently be described with the help of the distributions
of the length associated with a typical rise and a typical descent. Those random variables are denoted by
7% and 79 respectively and represented in Figure 1.1. The related distribution tails and truncated means
are given for every £ € {u,d} and r > 0 by

| lr] n—1
Ti(t) := )=[[(1—af) and O(t):=E[c at]= > ][I o). (1.6)

k=1 n=1k=1
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Implicitly, we exclude two pathological but irrelevant cases for which both of the length of runs are
almost surely constant or infinite with positive probability. Besides, we can assume (Xp,X;) = (u,d)
without lose of generality. In the sequel, we also need to consider the truncated second moments

Vg(l‘) :=E[(T£)2]1{‘T/|<t}]. (L.7)

Remark 1.1. [t is shown in [6] that the underlying VLMC admits a unique stationary probability mea-
sure if and only if the Markovian process {(X,,An)}n=0 on {u,d} x Z" does. Besides, it is equivalent
E[7?] < o0 and E[7*] < o0.

1.1 Outline of the article

The paper is organized as follows: Section 1.2 is devoted to the definition of the mean drift mg in
(1.1) involved in the main Assumption 1.1. In Section 1.3 is defined the normalizing function A (u)
appearing in Theorem 1.1 stating a generic version of the main results of this paper. More specific
statements are given in Theorems 2.1 and 3.1 in Sections 2 and 3 respectively. The aim of Section
4 is two folds: first it is briefly shown that Theorem 3.1 can be extended to PRWs built from a wider
class of probabilized context trees consisting of slight modifications of the original double infinite comb;
secondly, the extremal case excluded by 1.1 is briefly discussed.

The proofs of Theorem 2.1 and 3.1 are given in Sections 2 and 3 respectively. Some standard
estimates related to Assumption 1.1 are implicitly used in these proofs. For the sake of the reader, those
estimates are recalled in A.1. Finally, in Appendix A.2, the notion of anomalous diffusion introduced in
Section 3 is rigourously defined.

1.2 Mean drift and stability assumption

To begin with, when E[7¢] or E[7"] is finite, we introduce

_dy  E[7Y] —E[79] (1.8)

=4 T B R[]

extended by continuity to +1 when only one of the persistence times has a finite expectation. This
quantity naturally arises in the recurrence features of S as an almost sure drift as explained in [1].
Moreover, the quantities d,, and d; are nothing but the usual drifts associated with the RWs considered
in (2.6).
As another important quantity, there is the tail balance parameter defined as the following limit,
when it makes sense,
Tu(t) — Ta(t)

by := lim (1.9
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Figure 1.1: A sample path



Finally, let us set

(1.10)

— bs, when 7% and 7¢ are both not integrable,
71 d,, otherwise.

In the light of the LL.'-convergence in (3.9), the latter quantity is naturally called, when it exists, the
mean drift of S. This relevant characteristic (which is new to our knowledge) extends the notion of the
almost-sure drift d since it can be rewritten as

. Oy(t) —04(1)
mg = lim ——— . 1.11
= M 8u(r) + Oalr) (11D

Furthermore, a Strong Law of Large Number (SLLN) is established in [6], as well as a non-functional
Central Limit Theorem (CLT), under strong moment conditions on 7¢ and 7°. Here, the assumptions are
drastically weakened. More precisely, our main hypothesis is the following.

Assumption 1.1 (mean drift existence and «-stability). The mean drift mg is well defined and not ex-
tremal, that is mgs € (—1,1). Moreover, there exists o € (0,2] such that

7¢:= (1 —my) 7" — (1 + my) ¢ € D(), (1.12)
i.e. T¢ belongs to the domain of attraction of an o-stable distribution.

Obviously, the stable distribution of the assumption is supposed to be non-degenerated. For some
additional characterizations of mg and (1.12) we refer to Appendix A.1.

Remark 1.2. If T and ©% are supposed to be identically distributed, the resulting PRWs belong to the
family of the so-called DRRW processes introduced in [7] and motivated by the modelling of the ocean
surface wave fields. Thus, PRWs considered here are nothing but the anisotropic extension of DRRWs
and my can be interpreted as a quantification of this asymmetry.

1.3 Statements of the results

We shall establish a general functional invariance principle, stated in its compact form in Theorem 1.1
below, and refined in Theorems 2.1 and 3.1. For this purpose, it is needed to introduce the suitable
normalizing function A () in (1.1). To this end, consider the non-negative and non-decreasing functions
X(t) and O(z) given by

Z(t)zz—(l—ms)zVu< >+(1+m5)2Vd( ! ) and O(t) := Oy(t) +Oq(r). (1.13)

l_mS 1+ms

Thereafter, we set A (u) := aos(u), with

2

a(u)::inf{t>0:2(t)2>u

} and s(u):=inf{r >0:@oa(t)t > u}. (1.14)
Again, we refer to Appendix A.1 [leading to???] the regular variations of these normalization func-
tions. In particular, it follows from classical properties of these functions (see [8,9] for instance) that

(Z:c(zb(ti))z o and ®oaos(u)s(u) P (1.15)
Then, in virtue of the Slutsky’s theorem [10, Theorem 4.4., p. 27], one can replace the four functions
above by any other equivalent ones in a neighbourhood of infinity and obtain exactly the same functional
scaling limits as in Theorems 1.1. In this theorem, the Skorohod space of all right-continuous functions
o : [0,00) —> R having left-limits (cadlag) is endowed with the M;-topology and the convergence in
distribution with respect to the related Borel o-fields is denoted by M; (see [11] for more details).
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Theorem 1.1. Under Assumption 1.1, there exists a non-trivial cadlag stochastic process Zy, such that

S[uzJ—msut} {Su,—msut} M,
Olur] ~ M7 and 2 TS% — {Za(t)}i>0. (1.16)
{ A(u) =0 A(u) =0 Um0 {Za(t)}i20

As a matter of fact, there are mainly four situations depending on the position of a € (0,2] with
respect to the partition (0,1) L {1} 1 (1,2) b {2}. More precisely, from right to left, the limit stochastic
process Z, is equal to

1) B - a standard Brownian motion;

2) Sqp —astrictly o-stable Lévy process with skewness parameter

(1—=ds)*(1+bs) — (1 +ds)*(1 —by)

P (1—dg)*(1+by) + (1+dg)*(1—by)’ (1.17)
and Lévy jump measure
[(1?) Hecoy + (ils) 11{»0}} mdx; (1.18)
3) € —asymmetric Cauchy process having the marginal distribution
e : o (1.19)

S 2 (w2

4) .74 — the arcsine Lamperti anomalous diffusion defined in Appendix A.2 (actually up to an affine
transformation).

The first three situations cover all classical strictly stable Lévy processes having infinite variations.
In Section 3 precisions are given regarding the notion of anomalous diffusion and the arcsine Lamperti
denomination. This last case reprensents undoubtedly the most fruitful situation.

To put it in a nutshell, we bring out a phase transition phenomenon concerning the memory of the
limit process. It is either a Lévy motion, so that the long term memory of the underlying PRW is lost
after the change of scale, or it keeps an unbounded memory. In that case, this stochastic process is
self-similar of index 1 with compactly supported marginal distributions and somehow ballistic since
V(Zu(t)) = Dt* for some positive constant D depending on & and my. In full generality, anomalous
diffusions (relatively to their mean squared displacement) often appear in the field of Continuous Time
Random Walks (CTRWs) named also renewal reward processes or Lévy walks according to the context.
Roughly speaking, those are nothing but classical RWs subordinated to a counting process. Their scaling
limits has been widely investigated in [12-16]. Following [4] and particularly the “true” Lévy walks
denomination, one can seen a DRRW, or more generally a PRW, as a linear interpolation of a CTRW.

Remark 1.3. The authors in [6] show the convergence of some rescaling toward a generalized telegraph
process. Here, the transitions (1.4) and (1.5) are fixed, genuine scaling limits are investigated.

Remark 1.4. The cases of oo = 1 or mg # 0 are not investigated in [2, 3]. Furthermore, it seems there
are some misunderstandings in their results and proofs when a € (0,1). For more details, we refer to
Remark A.2 of the Appendix.

Remark 1.5. We make the effort to give an unified functional convergence. To enforce the scaling limit,
we do not have to know a priori the index of stability o since computing the mean drift mg and the
normalization function A(u) only involve the truncated means and second moments of the persistence
times. This could have some statistical interests.

Theorem 1.1 is divided, completed and proved below according to these two regimes. Since each
of the functional convergences in (1.16) implies the other one, Theorem 1.1 is a direct consequence of
Theorems 2.1 and 3.1 together with Lemmas 2.1 and 3.1.



2 The Lévy situations

The following lemma gives precise asymptotic of the the normalizing functions.
Lemma 2.1. For every o € [1,2], there exists positive slowly varying functions Eq(u) and d(u), the

latter being non-decreasing and converging toward d;, such that

1/a,1-1/a
a() ~ Zg)u'* and s(u) with  lim d(’:‘u) “ = 2.1

u— w0 d(u)’ w0 Bq(u/d(u))
If a =2, one can choose for E,(u) the non-decreasing function £ o a(u).

In the sequel, we consider stronger convergence in distribution: the J;-convergence and its restriction
% to the Wiener space of all continuous functions (see [10] for instance).

Theorem 2.1 (Lévy situations). For every o € [1,2], the scaling limit (1.16) can be rewritten in a
stronger way as follows.

1) If . =2 then

{0 (2 - au) } (B},

Eo(u) \ u

and { dru<SZt_dst>} L B()}z0. 22)
120

u—00

2) Ifae(1,2) then

dl/a 1—1/05 Su
{ rou < |ut| _dsl‘> J=1 {Saﬁ(l‘)}t;o. 2.3)

Ea(u) u—00

3) If « =1 then

dr (S I
{31(14)( u _dst> }120 == {€(1)}:=0,
or {oimms (B b )} el @)
=0

u—00
according to d; < o0 or d; = 0.

Remark 2.1. Obviously, when the persistence times are both square integrable, one can replace Z,(u)
in (2.2) by the the standard deviation of T°¢ to retrieve the standard CLT obtained in [6].

In this context, the quantity mg appears as a drift in probability since

S
lim 2 £ m;. 2.5)

n—oo n
Indeed, the latter convergence is a straightforward consequence of the SLLN proved in [1] when the
waiting times are both integrable. On the contrary, it is completely new when mg = b and it simply

follows from the right hand side of (2.4) since by Lemma 2.1 the multiplicative term tends to infinity.

Below, we prove Theorem 2.1. As a first step, Lemma 2.1 is admitted and its proof is postponed to
the end of this section. Besides, we chiefly insist on the most difficult situation, the Cauchy one, never
exposed to our knowledge.



Proofs

Let us introduce {7{'}>1 — the successive length of rises — and {7l};>; — the successive length of
descents — associated with the PRW. Those are two independent sequences of i.i.d. random variables
distributed as 7* and 79 respectively. Thereafter, we consider the sequence {T,},>0 of up-to-down
breaking times and {M,,},>0 the PRW observed at these moving times, both given by

n n

T,= Y (% +1) and M, =S5, =) (57 —5), (2.6)
k=1 k=1

with Ty = My = 0. Finally, we consider the continuous time counting process {N, };>o associated with
the non-decreasing random walk {7}, },>0, that is

N(@t):=max{n=>0:T, <t} =inf{n =>0: T, >1t}, (2.7)

The main idea consists of taking advantage of the following two decompositions, denoted respec-
tively by A or B, accordingly the situations. We recall — see Appendix A.1 —that mg = d; when o € (1,2]
or when o = 1 and d; < o0, whereas mg = by when a = 1 and d; = co. In particular, the random walks
in (2.8) and (2.11) below are a priori distinct.

A. When « € (1,2] or when a = 1 and d; = o0, we consider the random walk {C,},>¢ defined by
Co=0and foreveryn > 1,

n

Coi= Y [(1—my) g2 — (1+my)7f]. (2.8)
k=1

Thereafter, one can write the identity
Spur) —mgut = (M) —msTy(ur)) + R(ut) = Cyury + R(ut), (2.9)
where {R(v)},>0 is a residual continuous time process satisfying
ROV < (1 —mg) Ty, + (1 +mg) Ty, (2.10)

B. On the contrary, when ¢ = 1 and d; < o0, we consider the random walk {5,,},120 defined by
Co=0and foreveryn > 1,

n
Coi= ) [(1=by)T¢ — (1 +by)7]]. 2.11)
k=1
Here, one can write the identity
Spur] —Mgut = (S, — bsut) — (dg—bg) ut = Cy(ury — (ds — bg) ut + R(ut). (2.12)

Once again, the residual continuous time process {R(v)},=o satisfies an upper bound similar to (2.10)
but with by in place of mg. Those are obtained by straightforward computations.

The proof is organized as follows.
Step 1. We observe the following functional convergences.

A. Accordingto @ =2, € (1,2) ora =1 and d, = o0,

{CM } >0 pacs {B(1)} =0, {Sap(t)}i=0 or {&(t)},5- (2.13)

a(u) U—00



B. On the contrary, if &« = 1 and d; < o0, then

qutj — (ds—by)d;ut I
{ a(u) —— {€(N)}i- (2.14)
=0
Step 2. In any case, for all v > 0,
wp (MU _ |2 (2.15)
o<t<v S(M) u—00

Step 3. According to the cases A or B, we show that for all v > 0,

R(ut R(ut
W) | 2 o sup w) | ey (2.16)
or<v|@aos(u)| u—o osr<v|@os(u)| u—o

Step 4. We conclude applying a classical continuous mapping theorem and the Slutsky’s one.

We supply below the proofs of the four latter steps. Again, we fully used the standard estimations
and remarks in Appendix A.1.

Step 1. In the case of o € (1,2), the functional convergence in (2.13) is a direct consequence of
Assumption 1.1 together with classical results which can be found in [17] or [11, Chap. 4.] for instance.
To be more precise, we first need to note that 7° is centered, since d; < o0 and thus mg = d;, but also
that the skewness parameter f3 in (1.17) is nothing but

- P(7¢ >1) —P(1° < —t)
=0 P(1¢ > 1) +P(1° < —1)

(2.17)

The latter equality is a consequence of (A.7). Then, it remains to check that a(u) is the suitable nor-
malizing function leading to the properly scaled a-stable Lévy process characterized by the Lévy jump
measure (1.18). This follows from (A.8) and classical results on stable distributions in [8,9]. As far as
a = 2, similar arguments holds, the skewness parameter being irrelevant. However, when o = 1, we
need the following Lemma whose proof is postponed to the end of this section.

Lemma 2.2. Let W be a random walk whose jump w belongs to the domain of attraction of a symmetric
Cauchy distribution. Then, the centering term in the scaling limit can be chosen to be equal to zero when
w is not integrable, or to the drift otherwise, in such way that

W) Wi — E[w]ut N
{k<u> },>o o { k(u) }@0 o (€00 (2.18)

accordingly. Here we denote by k(u) the suitable normalizing function so that the limit process is the
symmetric Cauchy process defined previously.

Therefore, when o = 1 and d, = o0, one can see that 7°¢ belongs to the domain of attraction of a
symmetric Cauchy distribution since mg = by and

P(t¢>1t)—P(1° < —t
lim(T>) (1 < —t)

=0. 2.19
t—»o P(1¢ > 1)+ P(1° < —1) (2.19)



Again, the latter comes from (A.7). Then, applying the left hand side of (2.18) the proof follows the
same lines as previously. Unfortunately, 7°¢ is no longer well balanced when ot = 1 and d; < o0 because
it is possible that mg = ds # bs. This is the reason why we consider 7¢ := (1 —by)7* — (1 —bs)7® which
is still well balanced. However, we lose the the centering condition since

E[7°] = (ds —by)d;. (2.20)
Nevertheless, the right-hand side of (2.18) allow us to deduce the expected scaling limit (2.14).

Step 2. Again, we need to adapt the arguments accordingly as the persistence times are integrable
or not. Using the switching identity {7, <t} = {n < N(r)}, it suffices to show

Tisuy|

u

sup —t

0<r<v

0. (2.21)

To this end, we first note that, if d; < oo, the convergence in (2.21) at any fixed time ¢ but without the
supremum immediately follows from the weak law of large numbers, since from Lemma 2.1 one can
chose s(u) = u/d;. On the other hand, the same marginal convergences still hold when d; = o (and
thus necessarily o = 1) because in any case {7} },>¢ is relatively stable with the inverse of u — s(u)
as normalizing function. Indeed, applying [18, p. 174] for instance, we obtain the convergence in
distribution as u tends to infinity of

TL’”J o ®Oa(u)ut _ ®Oa(u)u TL‘”J _t¢ (2 22)
a(u) a(u) a(u) Qoa(u)u ’ '
Since the involved functions are regularly varying, we get from Lemma 2.1 that
Ooa(s(u))s(u) ~ u and a(u) <« Ooa(u)u. (2.23)

u—0o0 u—a0

This implies the convergence of the marginal distributions in (2.21) so that it only remains to prove the
convergence is uniform.

It is well-known for stable distributions that the convergence of one marginal distribution implies its
functional counterpart. Here the same is true. One way to prove this is to use the characteristics of semi-
martingales which are in addition processes with independent increments. More precisely, applying the
results in [19, Chap. VII, pp. 409-414], we only need to prove the uniform convergence on compact sets
of the characteristics (b, ¢, Vy) of { Tisquy) /u}i=0 as u tends to infinity. Besides, following [19, Chap.
IL, pp. 94-96], one has for any truncation function A,

71 T

b,,(t)zIE[h(—)][utJ, Eu(t)=V[h<—>][utJ and VL,([O,t]xg):=E[g<%)][utJ, (2.24)

u u

where 7 = 7@ + 1} is a jump of {7,},>0 and g is any bounded continuous bounded by x — x*in a

neighbourhood of the origin. The punctual convergence of this triplet toward (¢ — #,0,0) follows from
the convergence for r = 1. As a consequence, its uniform convergence on compact sets is obvious and
we deduce the convergence in distribution in the Skorokhod space endowed with the J;-Borel o-field.
Since convergence in distribution to a constant in a metric space implies convergence in probability, we
deduce (2.21) and thus (2.15) in any cases.

Step 3. We first note that it suffices to prove for every ¢ € {u,d},

7
N(ut)+1 P
o<i<y @os(u) u—m

(2.25)

9



Besides, it follows from Step 2. that given § > 0, there exists s > 0 such that for all u > s,

N
P (QM; = { sup (ut) —t
’ o<r<v| s(u)

In addition, one can see that for every € > 0,

<5}> >1-0. (2.26)

‘
T
P sup ~0 e 05| <1-[1-P(t' > eaos(u)]>". 2.27)
o<r<v aos(u) ’
Furthermore, it comes from Appendix A.1 that there exists a positive constant ¢ such that
2—a
L —o
ulP(t" > ea(u)) oc ( p > e % (2.28)

Therefore, we deduce that for every 6 > 0,

7 5 _
limsup P | sup Muntl o ) <8+ [l —exp <—25k <(x> 8“)] . (2.29)
s 00 o<r<y aos(u) a

Letting 6 — 0 ends the proof.

Step 4.To keep it concise, we only give details for the case of & = 1 and d; < o0, the other situations
being simpler. Setting s(u) = u/d;, it follows from (2.14) that we can apply the continuous mapping
theorem [10, Theorem 5.1, p.30] as in [10, Sect. 17., pp. 143-150] and deduce

{ CN(ur) — (ds—bs)ut } Ji {Q:(t)}zzo . (2.30)
n=0

aos(u) U—0

Then, looking at the decomposition (2.12), we obtain the desired result by using the Slutsky’s theorem
together with Step 3.. This ends the proof, excepted for Lemmas 2.2 and 2.1. O

Proof of Lemma 2.2. First, we can show by using [18, pp. 170-174] that a suitable centering term (in
the numerator) to get the marginal convergence at time ¢t = 1 above is

b(u) :=u <Jk(u) P(w > s)ds — Jk(u) P(—w > s)ds) , (2.31)

0 0

which can be rewritten when w is integrable as

b(u) = u [E[W] _ ( L Z) P(w > 5)ds — L Z) P(—w > s)dsﬂ . 232)

In fact, the convergence holds when u runs through the integers in most of the papers but since b(u)
and k(u) are regularly varying (of indices 0 and 1 respectively) a Slutsky type argument implies the
convergence for u along the real numbers. Besides, it is well known that the functional convergence
follows from the convergence of the marginal at t = 1.

To go further, we can see that for ¢ sufficiently large there exist % (¢) such that

) 1 (® 1 1 AE(r)
j P(+w > s)ds = f P(jw| > s)ds or J P(+w > s)ds = J P(lw| > s)ds, (2.33)
: 2 =0 0 2 J)o

10
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depending on whether w is integrable or not. Moreover, since the right tail and the left tail of w are
well balanced, standard results on regularly functions (in particular those of slowly variations) and their
inverses implies that A% () / tend to 1 as ¢ goes to infinity. Furthermore, noting that the two-sided tail
of w is regularly varying of index 1, the de Haan theory applies — especially [8, Theorem 3.7.3, pp.
162-163] coupled with [8, Theorem 3.1.16, p. 139] — and with (2.33) it implies that

u

J P(w > s)ds —J P(—w > s)ds or JMIP’(W > s)ds —J P(—w > s)ds, (2.34)
u 0 0

u

depending on whether w is integrable or not, is negligible with respect to ulP(|w| > u) as u goes to
infinity. To conclude, it suffices to note that uP(|w| > k(u)) is equivalent to 1 in a neighbourhood of
infinity and thus by the Slutsky’s theorem we deduce convergences (2.18). O

Proof of Lemma 2.1. In the sequel, we refer to Appendix A.1 regarding the first two estimates in (2.1) as
well as its right-hand side when d; < co. Hence, we focus on the situation when d; = oo (and thus o = 1).
Consider the tail distribution .7 () introduced in (A.4). It is not difficult to see that a suitable choice of
the slowly varying functions can be achieved by setting Z; (u) := a(u).7 ca(u) and d(u) := @caos(u)
respectively. Applying [8, Proposition 1.5.9a., p. 26] it comes that u.7 (u) is negligible with respect to
O(u) as u goes to infinity and the right-hand side of (2.1) follows. O

3 The anomalous situations

Let us start this section by describing the behaviour of the normalizing function.
Lemma 3.1. For every a € (0,1), one has

2-a)l-a)

u—o0 (04

Au) 3.1)

We detail the functional convergence (1.16) when the limit process .7 is no longer a stable Lévy
process nor even a Markov process. Roughly speaking, the latter is a random continuous piecewise
linear function built from an a-stable subordinator 7, (with no drift) as follows.

1) To each random excursion intervals [ = (T, (u—), Ty (u)) is attached a Rademacher random vari-
able 27 of parameter (1 +by)/2, all of them being independent from each other and of T,.

2) The slope of .#, on each jump interval I is chosen as Z7.

Such a stochastic process is properly exposed in [4] and its construction is briefly recalled in section
A.2 of the Appendix. Define the so called label process { Z4(f)}i=0 by Zu(t) := £ when ¢ € I, no
matter its values elsewhere, and consider the associated age time process given by

Ay (t) :=sup{v=0:2;_, = Z:}. 3.2)

Proposition 3.1. The distribution of {74 (t) };>0 does not depend on the scale parameter chosen for Ty,
and for all A > 0,

{(Fa(AD)}iz0 Z {AFult)}iz0- (3.3)

To go further, this stochastic process is continuous, of bounded variation and it can be written as
t
Falt) :f () ds. (3.4)
0
Furthermore, the stochastic process {( Za(t), (1)) }i=0 on {—1,1} x [0,00) is Markovian.
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Remark 3.1. At the sight of Remark 1.1, it turns out that the triplet (.%o, Zo, Hy) is somehow the con-
tinuous time counterpart of (S, X, A). In particular, the label process ¢, is in some sense a particular
model for a continuous time VLMC.

Theorem 3.1 (anomalous situation). For every o € (0,1), the functional convergence (1.16) can be

rewritten in a stronger form as

{S’} s {Fa(t)}s0. (3.5)
=0

u u—0o0
Moreover, the marginal 4(t) has the density function f;(x) on (—t,t) given by

_ 2sin(ra) (t—x)* 1t +x)%!
O mt rg(t—x)2% 4+ 2cos(ma) (t +x)%(t —x)% + 15 L (t 4+ x)2%

fi(x) (3.6)

with vs := (1 +my)/(1 —my). This is, up to an affine transformation, a so called arsine Lamperti
distribution. Besides, the parameter mg is nothing but its mean.

When o = 1/2 and mg = 0, the distribution f;(x) is nothing but the push forward image by x —
2tx — 1 of the classical arcsine distribution, the law of the occupation time of the half-line, up to the time
t, of a one-dimensional standard Brownian motion. In full generality, this distribution also appears, up
to an affine transformation, as the limit of the mean sojourn time of a class of discrete time processes
described by Lamperti in [5]. In addition, as explained in [20,21] the latter is the law of the occupation
time of the half-line for a skew Bessel process of dimension 2 — 2¢ with skewness parameter (1 + by)/2
and from [22, Corollary 4.2., p. 343] we obtain that f(x) is the density of

Ta—Ta
Da:: a FE
Ty +Tg

3.7

where T2 and T2 are independent positive o-stable random variable whose symbols are respectively

0 (1 () e 2 e () 6

Therefore, the marginal convergence at time ¢t = 1 in (3.5) can be interpreted as a kind of law of
large number in distribution which extends the classical one in [1] — the expectations in the right-hand
side of (1.8) being replaced by T and T¢. Finally, the terminology used for the so called mean drift my
is justified by the convergence

lim 2" ¥ m,, (3.9)

a direct consequence of the latter Theorem. Note also that d; = 00 and mg = by in this section (we refer
to Appendix A.1). The reason we used my rather than by or vice versa is motivated by the will to focus
on different meanings — a mean drift or a balance term — according to the situations.

Again, the proof of Lemma 3.1 follows from the estimates in Appendix A.l and its proof is omit-
ted. We begin with Proposition 3.1 which lay the ground to Theorem 3.1. We recall that a rigorous
construction of the limit process is given in Appendix A.2.

Proof of Proposition 3.1

First note that the distribution of ., does not depend on the scale parameter of 7, because of the scaling
property of Ty. The same argument applies to show the self-similarity of .%, given in (3.3).

Then, the integral representation (3.4) follows directly from the construction of the limit process.
Indeed, let us denote by .Z, () the integral of the label process. We observe that .7 (1) as Fy(t) are
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linear on each excursion interval I = (T, (u—), T, (u)) with a slope given by the Rademacher label 2.
Note also that for every ¢ € {Ty(s) : s = 0} one can write

Fa(t) = Io(1) )= +ATy(u) (3.10)

u<st

where the + represent the random labels associated with the corresponding excursion intervals and Y
is the overshoot limit defined in (A.16). Then, we easily deduce the equality for every 7 € [0, 20).

It remains to show that (2, o7 ) is Markovian. Let P{ be the distribution of such stochastic process.
From the regenerative property of a stable subordinator, we get that {(Zy(t + ), 2 (t + 5))}i=0 is
distributed as P for any s € {T(¢) : ¢t > 0}. Furthermore, let .7 be the remaining life time introduced
in (A.19). By using [23, Lemma 1.10, p. 15] one has

aa®

P(Aa(r) € dh | o (t) = a) = CEGE

dh, (3.11)
for any r > 0. We denote this homogeneous kernel by N(a;dh). Then, introduce for every £ € {—1,1} and
a = 0 the distribution H?&a) of the process on {—1,1} x [0,00) equal to 7 — (¢,a +1) up the random time
H, distributed as N(a;dh). Therefore, by construction and the regenerative property, it turns out that the
distribution of the stochastic process {(Z(f +5), % (t + 5)) }s>0 is — almost surely — the push-forward
image G*(HE"% ) ®P§) under the gluing map

Gwi,wa) == wi(t)Ljep,y +w2() s p,)- (3.12)
The Markov property is then a simple consequence of this representation. O

Remark 3.2. Since the distribution of (4(t), #4(t)) can be computed explicitly, Zo and thus %y can
be easily (numerically) generated. Moreover, it comes from [24, Theorem (3.2), p. 506] that the label
process admit the invariant (infinite) measure given by

J JG* (i) ©PE) —y da 2 (d0), (3.13)
fuat Jo

where 2 (dV) is the distribution allocating the weights (1+bs)/2 and (1 —bs)/2tou=1andd = —1
respectively. That can be put into perspective with the result in [6] stating that a the double-infinite comb
PRW admits an invariant probability measure if and only if the persistence times are both integrable

Proof of Theorem 3.1

First note that the tightness in (3.5) is obvious since the modulus of continuity of {S,;/u};>¢ is equal
to 1 almost surely. Hence, we only need to show the convergence of the finite-dimensional marginal
distributions. To this end, it suffices to adapt the results in [4]. In that paper, the authors consider Lévy

walks of the form
N(r)

&(t) = Y A+ (t = T Aw +15 (3.14)
k=1
with .
=Y J and N(t):=max{k>1:T; <t}. (3.15)
k=1

The random moving times J; and the jumps Ay Jy are i.i.d., the Ay being i.i.d. and independent of the
jumping times and of unit size. For our model, one can interpret {S,},>0 as such Lévy walk for which
the random moving times are given by 75, _, or 75, alternatively and with corresponding random jumps
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given by —§,_, or 73,. Hence, the directions are deterministic and equal to —1 or 1 alternatively. Even
if their assumptions do not fit to this model, we can see that their results extend easily to our situation.
Indeed, the central convergence [4, Theorem 3.4., pp. 4023-4024] becomes in our situation

(A“,Zi) L ($4(1).Ta(1)), (3.16)

a(n) a(n) ) n—-w

where T, and Sy defined in (A.15) are the coupled a-stable Lévy processes introduced to define the
arcsine Lamperti anomalous diffusion. Thereafter, it is not difficult to check that the same continuous
mapping and topological arguments used in the proof of [4, Theorem 4.11., p. 4032] and its Corollary
4.14., p. 4033, hold to obtain the functional convergence (3.5).

Remark 3.3. As a matter of facts, the limit process given in (1.16) and that in (3.5) satisfy

Zo(t) = y"(tza_ ms7 3.17)

where cq is the multiplicative constant in (3.1).

Let us explicit the marginal distributions. First, it comes that .7, can be achieved as the scaling limit
of a “true” Lévy walk, in the sense of [4]. The latter has random moving times and jumps respectively
given by &, + (1 —&,)7d and &,7% — (1 — &,)7%, with i.i.d. random directions 2&, — 1 independent of
the running times and distributed as 2" (d/¢) given in Remark 3.2.

Remark 3.4. The latter true Lévy walk is a randomized version of the PRW which is somehow more
convenient to study, as it is already appeared for the recurrence and transience criteria in [1].

It is also shown in [4, Theorem 5.6., pp. 4036-4037] that the density distribution f;(x) satisfies, in a
weak sense, the fractional partial differential equation

(J <§t+€§> (d€)>fz(X)=F(ll_oo;L&,(dx)%(dz). (3.18)

Besides, it follows from [4, Section 5., p. 4035] that f;(x) can be expressed as

fi(x) = =g J f“"‘x 1€_s ), )ds%(dz), (3.19)

where u(x,t) denotes the O-potential (the mean occupation time) density of (S¢, 7). Furthermore, the
Fourier-Laplace Transform (FLT) of uq/(x,#) can be computed explicitly and it leads to that associated
with .7, (1) given in equation (5.5) of [4]. It is equal here to

(s —iy)* '+ (s +iy)*!

(1) (s —imps (192 (s iy

Remark 3.5. By using the results in [15], it may be possible to provide the same representations of the
finite-dimensional marginal distributions.

(3.20)

Taking the derivative at the origin with respect to the spacial variable in (3.20), we can see that the
mean distribution of fj(x) is necessarily equal to m,. Furthermore, it seems conceivable to invert di-
rectly this FLT to get the expression (3.6). However, this is not the path we choose to borrow. In place,
we employ and generalize the ideas of [5] where the Lamperti distributions appear as mean occupation
time densities of a large class of stochastic processes. Finally, we make the connection with the theory
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of excursions.

Lamperti investigates in [5] the general question of the distribution of the mean occupation time of a
set A for some stochastic process {X, },>0 on a state space E. Regarding the dynamics, it is surprisingly
only assumed that E can be divided into two sets — the aforementioned A and an other one B — plus a
recurrent state ¢ in such a way that, if X,,_; € A and X, € B or vice versa, then necessarily X, = ©.
Given such process starting from o, Lamperti consider N, the occupation time of A up to the time n — the
state o being counted when the process comes from A — and he introduces F(x) the generating function
associated with the recurrence time of . This decomposition of the state space and how to count the
occupation time is resumed by the weighted diagram in the left-hand side of Figure 3.2. The following
Theorem is stated and proved in its paper.

Theorem 3.2. The mean occupation time {N, /n},>| converges in distribution as n goes to infinity to a

non-degenerate limit if and only if there exist & and p in (0, 1) such that

n—0o0

lim E[N,/n] =p and lxlgl(l —x)F'(x)/(1-F(x)) = a. (3.21)

Besides —in that case — the limit distribution has for density on (0, 1) the function

sin(ma) 10=1(1 — )@

3.22
T 2%+ 2cos(mo )t (1 —1)* +r=1(1—r)2%’ ( )

withr:= (1—p)/p.

The proof is based on a precise asymptotic estimate of the moments associated with N, as n goes to
infinity — via suitable generating functions and their regular variations — in order to identify the limit of
the Stieljes transform of N, /n.

In our case, it would seem natural to see A as the rises of S so that it can be write more or less as
Sn, = 2N, — n. Unfortunately, we have not been able to fit this situation to the latter Lamperti dynamic.
As a matter of fact, the communication diagram and the way to compute the suitable occupation time
N, can be given as in the right hand side of Figure 3.2. To be more precise, if we consider the 2-letters
process X,, := X, X, 1 with the decomposition of {u,d} x {u,d} given by A := {uu}, B:= {dd}, 6 :=ud
and 7 := du and if we denote by N, the occupation time of A up to the time n — the state 1 being counted
or not according to well chosen weights — the PRW satisfies for any n > 1 the relation S, = 2N,_; —n.

Figure 3.2: Original and current Lamperti decomposition of the state space
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Note also that ¢ and 1 are recurrent states and since the random times spend in A and B are distributed
as 7% and 79 respectively the recurrence times of ¢ and 1) are both equal in law to T = 7% 4 79,

To get the limit distribution, we adapt and follow a part of the proof in [5]. To this end, we introduce
Pn i the probability — starting from ¢ — that N, = k and we denote by u, and d, the probability that
T = n and 79 = n respectively. Thereafter, by conditioning with respect to the complete three events
{t<nfu{r=n+1,70<n}u{rt?>n+1} we obtain

Pk =, it Pu— ity jmm + Y, di-Ta(n—1) i1 + Ta(n)8eo, (3.23)
m+I<n I<n
m<k
with §;  is 1 or 0 according to i = j or not. Then, let F;(z) be the generating function of ¢ and T;(z)
be the one associated with its tail distribution. it follows that the double generating function associated
with the latter difference equation satisfies
_ Fa()Ta(xy)y + Ta(x)

P(x,y) = > puxx'y* = : (3.24)
11J<Z>O ’ I_Fd(x)Fll(x}))

From our stability assumption and classical results on regular variations, we get that there exists a slowly
varying function L(z) such that

1R - 1-956 5 (52)L(5) a9 (325)

1—z

the same asymptotic and equality being also true replacing u by d and (1 +bs)/2 by (1 —bg)/2. Then
we can check that for any A > 0,

1+A)% g
lim(1 — P( ) _Ml_x)> =(—‘, 3.26
)?Tnf( P (x.e (I+2A)%+ry (3.26)
and thereafter the proof follows exactly the same lines as [5]. We obtain the arcsine Lamperti density.
Note that it may be possible to state and prove a general theorem for such Lamperti processes.

O

Remark 3.6. One can deduce from (3.4) that [22, section 4. ] and [20, Theorem 1] apply to our situation
to get the latter marginal densities, making the link with the distribution of the occupation time of the
positive half-line for a skew Bessel process.

4 Some generalizations

In this section, we discuss briefly of some generalisation of the main theorem. First, following the ideas
of [1, Section 4.], we extend the results to a wider class of PRWs in the case of persitence times with
infinite mean. For these PRWs, there is no longer a renewal scheme allowing the cutting into independent
pieces. Secondly, we say some words on the assumption 1.1 and more precisely on the extremal case.

Consider a double-infinite comb and attach to each finite leaf ¢ another context tree T, (possibly
trivial) as in Figure 4.3. The leaves of the related graft are denoted by % and this one is endowed with
Bernoulli distributions {g; : [ € %.} on {u,d}. Note that any probabilized context tree on {u,d} can
be constructed in this way. We denote by S€ the corresponding PRW. In this case, the random walk
is particularly persistent in the sense that the rises and descents are no longer independent. A renewal
property may still hold but it is more tedious to expect in general. Let S and S be the double-infinite
comb PRWs with respective transitions

a® :=sup{q.(d) : c€ Cuwa}, A% =inf{g.(u):ce Cau},
and @Y :=inf{q.(d):c€ Guwa}, @5 :=sup{qc(u):ce Can}, 4.1)

16



and denote for every £ € {u,d} by 7’ and 7! the corresponding waiting times.

Corollary 4.1. Assume that S or S satisfy Assumption 1.1 with o € (0,1) but also that ©* and 7! have
asymptotically equivalent tail distributions for each ¢ € {u,d}. Then Theorem 3.1 holds for S&.

The proof of this Corollary is a straightforward consequence of the comparison results stated in [1].
For instance, those assumptions can be easily achieved when the non-trivial grafts are both in finite
number and of finite size.

Finally, for the seek of simplicity, we have exclude in Assumption 1.1 the extremal mean drifts, say
my = | for the example. This situation may arise when @ = 1 and d; = oo but also when a € (0,1). As
a matter of fact, it is possible to obtain similar functional convergences as (2.4) or (3.5) but toward the
null or the identity process respectively. To this end, it suffices to replace X(¢)? by V(¢) defined in (A.4)
in the settings of a(u) and the proofs follows the same lines. The additional assumptions to obtain non
trivial limits are more subtle. If 7¢ belongs to D(y) with 0 < y < @ < 1 — assumption (#) — or if it is a
relatively stable distribution (see [8, Chap. 8.8, p. 372]) — assumption (*) — then the generic form of the
functional convergence seems to be respectively

l—«
u Y S[MI‘J i q y
{_E<”) ( u _t> };>o e T ONa(I))}tzo (#),

or {—lila <S‘”—t> }ZZO e NE)}ee (%), (42)

E(u) \ u Uu—>00

where Z(u) is slowly varying and T}ﬁi is a y-stable subordinator independent — contrary to the non-
extremal situation — of the @-local time N2. Besides, assuming in place of assumption () that 7% € D(7)
for some y € [1,2], the next term in the asymptotic expansion (*) in (4.2) is — heuristically — of the order
of $30 N (r)/u®/Y, where S is a y-stable Lévy process independent of N.

A Appendices

The estimates in Appendix A.1 are standards and rely on classical results on stable distributions and reg-
ularly varying functions (see [8, 9] for instance). Regarding the construction of the anomalous diffusion
in Appendix A.2, we mention [4] for the original definition and [23] concerning classical results about
Lévy subordinators.

A.1 Equivalent settings of Assumption 1.1 and some consequences

Let 7.(t) and V,(t) be the two-sided distribution tail and the truncated second moment of 7¢. In the
following, we denote by RV (1) the set of regularly varying functions of index A € R, also named the set

Figure 4.3: Grafting of the double-infinite comb
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of slowly varying functions SV if A = 0. It is well known that hypothesis (1.12) is equivalent to
Vo(t) eRV(2—a), orequivalently when o # 2, 7.(t) e RV(—a), (A.1)
with an additional tail balance criterion when @ # 2: there exists f§ € [—1, 1] with

- P(7¢ >1) —P(1° < —t)
1= P(1¢ > 1) +P(7¢ < —t)

=B. (A.2)

Also, it is well known — see [9, Theorem 2, Chap. VIIL.9, p. 283] for instance — that

rI(1) 2-a
-0 Vo)  a (A.3)
Finally, we introduce
T(t):=F(t)+ T5(t) and V(t):=Vu(r) + Va(r), (A4)

and given any functions f(z) and g(z) defined on a neighbourhood of infinity, we set f(¢#)=g(¢) when
there exists ¢ > 0 such that for ¢ sufficiently large ¢~ 'g(r) < f(t) < cg(t).

The proofs of the following two Lemma are straightforward calculations involving only classical
results on regularly varying functions or standard estimations, they are omitted. The first one can be
useful, among other considerations, to state alternative forms of the stability condition 1.12, whereas
the second one allow us to discriminate whether the persistence times are integrable or not and thus to
identify the mean drift in Assumption 1.1.

Lemma A.1. Assuming the existence of the mean drift mg € (—1,1), the stability hypothesis (1.12) is
then equivalent when . # 2 to T* — 1% € D(@) but also to

[V(t) ERV2—a) or (1) eRV(—a)] and tim 22 =70 (A.5)

=0 Ty (t) + Ta(t)

In that case, the functions 7 (t) and V (t) are respectively the two-sided tail distribution and the trun-
cated second moment of T° — ¢ but also of T + t%. Besides, one has

70~ [0-moe (S5 ) e emye (1) 70 (A6)

and a similar asymptotic between V;(t) and V (t). Moreover, the balance term [ in (A.2) satisfies

(1 —mg)*(1+bs) — (1 +my)*(1—hy)

= . A7
P = T =my)# (17 by + (15 my)@(1—by) (A7)

Finally, one has
Vit hei<n] > VelO) ~ (1) (A.8)

One can draw the following consequences. First, when & # 2, the stability condition (1.12) means
that at least T or 7¢ belongs D(a), the tail distribution of the other waiting time being comparable or
negligible with the former. On the other hand, when o = 2, we deduce from [25, Theorem 4.5., p. 790]
the following consequence.

Remark A.1. It is possible for every linear combination of T and 19, excepted ¢, to not belong to the
domain of attraction of a normal distribution.
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Finally, the functions a(u), s(u), along with X(¢)*> and ®(¢) and any others built from them by
composition, product or generalized inverse, are regularly varying.

Lemma A.2. Let U be a positive measure on [0,00) and for any p = 0 and t > 0,
M, (1) = f Pu(dx) and To(r) = f P (d). (A9)
[0,] (t,00)

Then for any g > p =0,

Mz(u)ldu—quEI) and Ty(t) XJ

(1,0)

M,y(u) du M, (1)

My (1) = ud—r+1 ta—r

(A.10)

Therefore, when a € (1,2], the persistence times are both of finite mean (thus d, < 00) and m; = d;
if we suppose Assumption 1.1. On the contrary, when o € (0, 1), the persistence times are both of infinite
mean (thus d; = 00) and mg = b. To conclude, when o = 1, the two latter situations are possible.

A.2  Construction of the Lamperti anomalous diffusion

Let Ty be an a-stable Lévy subordinator with no drift and let ¢ < (0,00) be its random set of jumps.
The closure of the image % := {Ty(t) : t > 0} is a perfect set of zero Lebesgue measure satisfying

Ko = Ro LW {Ty(u—) ue #} and [0,00)\Zg = |_| (To(u—), Te,(ut)). (A.11)
ue ¢
The backward recurrence time (also the current life time) and the forward renewal time (also the residual
life time) are the stochastic processes respectively defined as

Go(t):=sup{s <t:s€Xq} and Hy(t)=inf{s>1:5€ Xqy}. (A.12)

We refer carefully to Figure A.4 below. Those are cadlag and Gy (t) = Ty (u—) and Hy (t) = To (1) when
To(u—) <t < Ty(u) and Go(t) = Hy(t) = Ty(u) when t = Ty (u). To go further, we consider the local
time of the stable subordinator Ty, defined by

Ny (t) :==inf{s > 0: Ty(s) >t} = sup{s > 0: Ty (s) <t}. (A.13)

Note the useful switching identity {7y (s) <} = {5 < Ng()}. It turns out that Ny is a non-decreasing
continuous stochastic process such that the support of the random Stieljes measure dN,, is equal to %
and Ny (1) = u whenever Ty (u—) <t < Ty(u). When a = 1/2, it is nothing but the classical local time
of a Brownian motion. Furthermore, one can be decomposed 7y, as

1/a _ 1/a
Tu(t) = T2(1) + TE() = <”;b5) T&(t)—l—(l 2"5) (), (A.14)

Ne(t)=u
Zalt)=—1
slope = £1

Figure A.4: Construction of the anomalous diffusion
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where T}, and T}/ are i.i.d. with the same distribution as Ty. This can be obtained intrinsically by labelling
each jump interval (excursion) I = (To(u—), Te(u)) as in [22, pp. 342-343] by i.i.d. Rademacher random
variables 27 independent of T, and of parameter (1 + by)/2. It follows that 72(¢) and TS(¢) can be
viewed as the sums up to the time 7 of the jumps ATy (1) := Ty (1) — Ty (u—) for which the corresponding
labels are respectively equal to one and minus one. They are both thinning of the initial subordinator.
Coupled with the latter decomposition, we can consider the a-stable Lévy process

1/a . 1/a
sal) =20 - 120 - (52 o~ (152) no. (A15)

It can be viewed as a pure jump process whose increment ASy () is equal to AT (u) or —ATy(u) accord-
ing to the label of the corresponding excursion. Following the terminology used in [16], we introduce
the so-called lagging and leading cadlag stochastic processes respectively defined by

Xo(t):=[Sg oNg]t(t) and Yu(t):=SqoNy(t), (A.16)

where F* (1) := F(t) is the right or the left continuous version of a function F(¢). It is not difficult to
check that Xy (1) = S (u—) and Yo (1) = S () when Ty (u—) <t < Ty (u) whereas Xy (1) = Yy (1) = S (1)
when 7 = Ty (u). Note also that the first and last renewal time processes can be rewritten as

Gu(t) = [Ty oNg]"(t) and Hg(t) = T oNy(t). (A.17)

Thereafter, we called arcsine Lamperti anomalous diffusion a stochastic process distributed as

Falt) = X“(t)Hm(Ya(f)—Xa(t))a when ¢ %,

Xa(t), when 1€ %y.

(A.18)

In other words, the so-called anomalous diffusion .#(t) is the center of mass of the lagging and leading
processes Xy (¢) and Y (¢) with respective weights given by the so called remaining time and age time
stochastic processes

Ho(t) :=Hg(t)—t and y(t) =t —Gylt). (A.19)

Remark A.2. It seems that [2, Theorem 1.3.] and equation (3.24), p. 3281, in the proof of [3, Theorem
2.6., p. 3272] are not entirely true. Indeed, their results would imply that

S 2y ), (A.20)
n n—oow

However, the latter convergence can not be true since Yy (1) is not compactly supported contrary to
Xo(1). Moreover, in their results it misses the residual term insuring the continuity of the limit process.
This kind of subtle mistake has already been made in [13] but corrected in [14].
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